Yu Jiaqi 4f882be4a0
[Model] Siglip2 Model Support (#27566)
Signed-off-by: piood <2477084691@qq.com>
2025-10-27 06:57:37 -07:00

1136 lines
38 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Implementation of SiglipVisionModel intended to be only used
within a vision language model."""
import math
from collections.abc import Iterable, Mapping
from functools import cached_property
from typing import Annotated, Literal
import torch
from torch import nn
from transformers import (
BatchFeature,
SiglipConfig,
SiglipProcessor,
SiglipTextConfig,
SiglipVisionConfig,
)
from vllm.attention.layer import MultiHeadAttention
from vllm.config import VllmConfig
from vllm.config.multimodal import BaseDummyOptions
from vllm.distributed import divide, get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.pooler import DispatchPooler, Pooler
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader,
maybe_remap_kv_scale_name,
)
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (
MultiModalDataDict,
MultiModalFieldConfig,
MultiModalInputs,
MultiModalKwargsItems,
MultiModalUUIDDict,
)
from vllm.multimodal.parse import ImageProcessorItems, ImageSize, MultiModalDataItems
from vllm.multimodal.processing import (
BaseMultiModalProcessor,
BaseProcessingInfo,
PromptIndexTargets,
PromptReplacement,
PromptUpdate,
)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.utils.tensor_schema import TensorSchema, TensorShape
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsQuant
from .interfaces_base import default_pooling_type
from .utils import AutoWeightsLoader, maybe_prefix
from .vision import (
VisionEncoderInfo,
VisionFeatureSelectStrategy,
VisionFeatureSelectStrategyStr,
get_num_selected_vision_tokens,
resolve_visual_encoder_outputs,
)
class SiglipImagePixelInputs(TensorSchema):
"""
Dimensions:
- bn: Batch size * number of images
- c: Number of channels (3)
- h: Height of each image
- w: Width of each image
"""
type: Literal["pixel_values"]
data: Annotated[torch.Tensor, TensorShape("bn", 3, "h", "w")]
_POOLING_TYPE_TO_STRATEGY: dict[str, VisionFeatureSelectStrategyStr] = {
"MEAN": "full",
"ALL": "full",
"CLS": "class",
}
def _get_vision_feature_select_strategy(
pooling_type: str,
) -> VisionFeatureSelectStrategyStr:
try:
return _POOLING_TYPE_TO_STRATEGY[pooling_type]
except KeyError:
raise ValueError(
f"No feature selection strategy is defined for "
f"pooling_type: {pooling_type!r}"
) from None
class SiglipProcessingInfo(BaseProcessingInfo):
def get_hf_config(self):
return self.ctx.get_hf_config(SiglipConfig)
def get_vision_encoder_info(self):
return SiglipEncoderInfo(self.get_hf_config())
def get_hf_processor(self, **kwargs: object):
return self.ctx.get_hf_processor(SiglipProcessor, **kwargs)
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
return {"image": 1}
def get_num_image_tokens(
self,
*,
image_width: int,
image_height: int,
) -> int:
vision_encoder_info = self.get_vision_encoder_info()
pooler_config = self.ctx.model_config.pooler_config
assert pooler_config is not None
return get_num_selected_vision_tokens(
vision_encoder_info.get_num_image_tokens(
image_width=image_width,
image_height=image_height,
),
_get_vision_feature_select_strategy(pooler_config.pooling_type),
)
def get_image_size_with_most_features(self) -> ImageSize:
vision_encoder_info = self.get_vision_encoder_info()
width = height = vision_encoder_info.get_image_size()
return ImageSize(width=width, height=height)
def get_max_image_tokens(self) -> int:
target_width, target_height = self.get_image_size_with_most_features()
return self.get_num_image_tokens(
image_width=target_width, image_height=target_height
)
class SiglipDummyInputsBuilder(BaseDummyInputsBuilder[SiglipProcessingInfo]):
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
return ""
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
mm_options: Mapping[str, BaseDummyOptions] | None = None,
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
target_width, target_height = self.info.get_image_size_with_most_features()
image_overrides = mm_options.get("image") if mm_options else None
return {
"image": self._get_dummy_images(
width=target_width,
height=target_height,
num_images=num_images,
overrides=image_overrides,
)
}
class SiglipMultiModalProcessor(BaseMultiModalProcessor[SiglipProcessingInfo]):
@cached_property
def image_token_id(self) -> int:
tokenizer = self.info.get_tokenizer()
dummy_token_id = next(
token_id
for token_id in range(tokenizer.vocab_size)
if token_id not in tokenizer.all_special_ids
)
return dummy_token_id
def apply(
self,
prompt: str | list[int],
mm_data: MultiModalDataDict,
hf_processor_mm_kwargs: Mapping[str, object],
tokenization_kwargs: Mapping[str, object] | None = None,
*,
mm_uuids: MultiModalUUIDDict | None = None,
) -> MultiModalInputs:
if prompt and mm_data:
raise ValueError(
"Siglip accepts text-only or image-only inputs, not both! "
"Image-only inputs means passing an image with an empty text "
"prompt."
)
if mm_data:
# For multi-modal data, the prompt after processing should
# only contain the image token
tokenization_kwargs = {
**(tokenization_kwargs or {}),
"add_special_tokens": False,
}
return super().apply(
prompt=prompt,
mm_data=mm_data,
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
tokenization_kwargs=tokenization_kwargs,
mm_uuids=mm_uuids,
)
def _hf_processor_applies_updates(
self,
prompt_text: str,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
tokenization_kwargs: Mapping[str, object],
) -> bool:
return False
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return dict(pixel_values=MultiModalFieldConfig.batched("image"))
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargsItems,
) -> list[PromptUpdate]:
image_token_id = self.image_token_id
def get_replacement(item_idx: int):
images = mm_items.get_items("image", ImageProcessorItems)
image_size = images.get_image_size(item_idx)
num_image_tokens = self.info.get_num_image_tokens(
image_width=image_size.width, image_height=image_size.height
)
return [image_token_id] * num_image_tokens
return [
PromptReplacement(
modality="image",
target=PromptIndexTargets.start(),
replacement=get_replacement,
),
]
class SiglipEncoderInfo(VisionEncoderInfo[SiglipVisionConfig]):
def get_num_image_tokens(
self,
*,
image_width: int,
image_height: int,
) -> int:
return self.get_patch_grid_length() ** 2
def get_image_size(self) -> int:
return self.vision_config.image_size
def get_patch_size(self) -> int:
return self.vision_config.patch_size
def get_patch_grid_length(self) -> int:
image_size, patch_size = self.get_image_size(), self.get_patch_size()
return image_size // patch_size
# Adapted from https://github.com/huggingface/transformers/blob/v4.43.3/src/transformers/models/siglip/modeling_siglip.py#L249 # noqa
class SiglipVisionEmbeddings(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches
self.position_embedding = VocabParallelEmbedding(
self.num_positions, self.embed_dim
)
self.register_buffer(
"position_ids",
torch.arange(self.num_positions, dtype=torch.int64).expand((1, -1)),
persistent=False,
)
def interpolate_pos_encoding(
self, embeddings: torch.Tensor, height: int, width: int
) -> torch.Tensor:
"""
This method is an adapted method for SigLIP (due to SigLIP not having
class embedding unlike other ViTs) that allows the model to interpolate
the pre-trained position encodings such that it can be usable on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
position_embeddings = self.position_embedding.weight.unsqueeze(0)
num_patches = embeddings.shape[1]
num_positions = position_embeddings.shape[1]
if num_patches == num_positions and height == width:
return position_embeddings
dim = embeddings.shape[-1]
height = height // self.patch_size
width = width // self.patch_size
# we add a small number to avoid floating point error
# in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
height, width = height + 0.1, width + 0.1
patch_pos_embed = position_embeddings.reshape(
1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim
)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
scale_factor=(
height / math.sqrt(num_positions),
width / math.sqrt(num_positions),
),
mode="bicubic",
align_corners=False,
)
if (
int(height) != patch_pos_embed.shape[-2]
or int(width) != patch_pos_embed.shape[-1]
):
raise ValueError(
"Width or height does not match with "
"the interpolated position embeddings"
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return patch_pos_embed
def forward(
self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False
) -> torch.Tensor:
_, _, height, width = pixel_values.shape
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(
pixel_values.to(dtype=target_dtype)
) # shape = [*, width, grid, grid]
embeddings = patch_embeds.flatten(2).transpose(1, 2)
if interpolate_pos_encoding:
embeddings += self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings += self.position_embedding(self.position_ids)
return embeddings
class SiglipAttention(nn.Module):
def __init__(
self,
config: SiglipVisionConfig | SiglipTextConfig,
quant_config: QuantizationConfig | None = None,
*,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got "
"`embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.qkv_proj = QKVParallelLinear(
hidden_size=self.embed_dim,
head_size=self.head_dim,
total_num_heads=self.num_heads,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.out_proj = RowParallelLinear(
input_size=self.embed_dim,
output_size=self.embed_dim,
quant_config=quant_config,
prefix=f"{prefix}.out_proj",
)
self.tp_size = get_tensor_model_parallel_world_size()
self.num_heads_per_partition = divide(self.num_heads, self.tp_size)
self.attn = MultiHeadAttention(
self.num_heads_per_partition, self.head_dim, self.scale
)
def forward(
self,
hidden_states: torch.Tensor,
) -> tuple[torch.Tensor, None]:
"""Input shape: Batch x Time x Channel"""
qkv_states, _ = self.qkv_proj(hidden_states)
query_states, key_states, value_states = qkv_states.chunk(3, dim=-1)
needs_unsqueeze = query_states.ndim == 2
if needs_unsqueeze:
query_states, key_states, value_states = (
query_states.unsqueeze(0),
key_states.unsqueeze(0),
value_states.unsqueeze(0),
)
out = self.attn(query_states, key_states, value_states)
if needs_unsqueeze:
out, query_states, key_states, value_states = (
out.squeeze(0),
query_states.squeeze(0),
key_states.squeeze(0),
value_states.squeeze(0),
)
attn_output, _ = self.out_proj(out)
return attn_output, None
class SiglipMLP(nn.Module):
def __init__(
self,
config: SiglipVisionConfig | SiglipTextConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.activation_fn = get_act_fn(config.hidden_act)
# Special handling for BNB and torchao quantization
if quant_config and quant_config.get_name() in ["bitsandbytes", "torchao"]:
quantizable = True
else:
# For other quantization, we require the hidden size to be a
# multiple of 64
quantizable = (
config.hidden_size % 64 == 0 and config.intermediate_size % 64 == 0
)
self.fc1 = ColumnParallelLinear(
config.hidden_size,
config.intermediate_size,
quant_config=quant_config if quantizable else None,
prefix=f"{prefix}.fc1",
)
self.fc2 = RowParallelLinear(
config.intermediate_size,
config.hidden_size,
quant_config=quant_config if quantizable else None,
prefix=f"{prefix}.fc2",
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states, _ = self.fc2(hidden_states)
return hidden_states
class SiglipEncoderLayer(nn.Module):
def __init__(
self,
config: SiglipVisionConfig | SiglipTextConfig,
quant_config: QuantizationConfig | None = None,
*,
prefix: str = "",
) -> None:
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = SiglipAttention(
config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = SiglipMLP(
config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
) -> tuple[torch.Tensor, None]:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, _ = self.self_attn(hidden_states=hidden_states)
hidden_states += residual
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states += residual
return hidden_states, None
class SiglipEncoder(nn.Module):
def __init__(
self,
config: SiglipVisionConfig | SiglipTextConfig,
quant_config: QuantizationConfig | None = None,
num_hidden_layers_override: int | None = None,
*,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
if num_hidden_layers_override is None:
num_hidden_layers = config.num_hidden_layers
else:
num_hidden_layers = num_hidden_layers_override
self.layers = nn.ModuleList(
[
SiglipEncoderLayer(
config,
quant_config=quant_config,
prefix=f"{prefix}.layers.{layer_idx}",
)
for layer_idx in range(num_hidden_layers)
]
)
def forward(
self,
inputs_embeds: torch.Tensor,
return_all_hidden_states: bool,
) -> torch.Tensor | list[torch.Tensor]:
hidden_states_pool = [inputs_embeds]
hidden_states = inputs_embeds
for encoder_layer in self.layers:
hidden_states, _ = encoder_layer(hidden_states)
if return_all_hidden_states:
hidden_states_pool.append(hidden_states)
# If we have multiple feature sample layers, we return all hidden
# states in order and grab the ones we need by index.
if return_all_hidden_states:
return hidden_states_pool
return hidden_states
class SiglipTextTransformer(nn.Module):
def __init__(
self,
config: SiglipTextConfig,
quant_config: QuantizationConfig | None = None,
*,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = SiglipTextEmbeddings(config)
self.encoder = SiglipEncoder(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.encoder",
)
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.head = nn.Linear(embed_dim, config.projection_size)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embeddings.token_embedding(input_ids)
def forward(
self,
input_ids: torch.Tensor | None,
position_ids: torch.Tensor,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
hidden_states = self.embeddings(input_ids, position_ids, inputs_embeds)
last_hidden_state = self.encoder(
inputs_embeds=hidden_states, return_all_hidden_states=False
)
last_hidden_state = self.final_layer_norm(last_hidden_state)
return last_hidden_state
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class SiglipMultiheadAttentionPoolingHead(nn.Module):
"""Multihead Attention Pooling."""
def __init__(
self,
config: SiglipVisionConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
# TODO(ChristopherCho): Implement vLLM version of MultiheadAttention
self.attention = torch.nn.MultiheadAttention(
config.hidden_size, config.num_attention_heads, batch_first=True
)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.mlp = SiglipMLP(
config=config, quant_config=quant_config, prefix=f"{prefix}.mlp"
)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
batch_size = hidden_state.size(0)
probe = self.probe.expand(batch_size, -1, -1)
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
residual = hidden_state
hidden_state = self.layernorm(hidden_state)
hidden_state = self.mlp(hidden_state)
hidden_state += residual
pooled = hidden_state[:, 0]
return pooled.unsqueeze(1)
class SiglipVisionTransformer(nn.Module):
def __init__(
self,
config: SiglipVisionConfig,
quant_config: QuantizationConfig | None = None,
*,
num_hidden_layers_override: int | None = None,
require_post_norm: bool | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = SiglipVisionEmbeddings(config)
self.encoder = SiglipEncoder(
config,
quant_config=quant_config,
num_hidden_layers_override=num_hidden_layers_override,
prefix=f"{prefix}.encoder",
)
num_hidden_layers = config.num_hidden_layers
if len(self.encoder.layers) > config.num_hidden_layers:
raise ValueError(
f"The original encoder only has {num_hidden_layers} "
f"layers, but you requested {len(self.encoder.layers)} layers."
)
# If possible, skip post_layernorm to conserve memory
if require_post_norm is None:
require_post_norm = len(self.encoder.layers) == num_hidden_layers
if require_post_norm:
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
else:
self.post_layernorm = None
self.use_head = (
True if not hasattr(config, "vision_use_head") else config.vision_use_head
)
if self.use_head:
self.head = SiglipMultiheadAttentionPoolingHead(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.head",
)
@property
def dtype(self):
return next(self.parameters()).dtype
@property
def device(self):
return next(self.parameters()).device
def forward(
self,
pixel_values: torch.Tensor,
*,
interpolate_pos_encoding: bool = False,
select_layers: list[int] | None = None,
feature_select_strategy: VisionFeatureSelectStrategy | None = None,
) -> torch.Tensor:
hidden_states = self.embeddings(
pixel_values,
interpolate_pos_encoding=interpolate_pos_encoding,
)
# Produces either the last layer output or all of the hidden states,
# depending on if we have select_layers or not
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
return_all_hidden_states=select_layers is not None,
)
if self.post_layernorm is not None:
encoder_outputs = self.post_layernorm(encoder_outputs)
if self.use_head:
encoder_outputs = self.head(encoder_outputs)
# stacks feature layers if needed
encoder_outputs = resolve_visual_encoder_outputs(
encoder_outputs,
None,
select_layers=select_layers,
max_possible_layers=self.config.num_hidden_layers,
feature_select_strategy=feature_select_strategy,
)
return encoder_outputs
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
layer_count = len(self.encoder.layers)
for name, loaded_weight in weights:
# post_layernorm is not needed in SiglipVisionTransformer
if name.startswith("post_layernorm") and self.post_layernorm is None:
continue
# omit layers when num_hidden_layers_override is set
if name.startswith("encoder.layers"):
layer_idx = int(name.split(".")[2])
if layer_idx >= layer_count:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class SiglipVisionModel(nn.Module):
config_class = SiglipVisionConfig
main_input_name = "pixel_values"
def __init__(
self,
config: SiglipVisionConfig,
quant_config: QuantizationConfig | None = None,
*,
num_hidden_layers_override: int | None = None,
require_post_norm: bool | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.vision_model = SiglipVisionTransformer(
config,
quant_config,
num_hidden_layers_override=num_hidden_layers_override,
require_post_norm=require_post_norm,
prefix=f"{prefix}.vision_model",
)
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@property
def dtype(self):
return self.vision_model.dtype
@property
def device(self):
return self.vision_model.device
def forward(
self,
pixel_values: torch.Tensor,
interpolate_pos_encoding: bool = False,
select_layers: list[int] | None = None,
feature_select_strategy: VisionFeatureSelectStrategy | None = None,
) -> torch.Tensor:
return self.vision_model(
pixel_values=pixel_values,
interpolate_pos_encoding=interpolate_pos_encoding,
select_layers=select_layers,
feature_select_strategy=feature_select_strategy,
)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
layer_count = len(self.vision_model.encoder.layers)
for name, loaded_weight in weights:
# post_layernorm is optional in SiglipVisionModel
if (
name.startswith("vision_model.post_layernorm")
and self.vision_model.post_layernorm is None
):
continue
# omit layers when num_hidden_layers_override is set
if name.startswith("vision_model.encoder.layers"):
layer_idx = int(name.split(".")[3])
if layer_idx >= layer_count:
continue
# Check if this is a scale parameter that needs remapping first
if name.endswith((".k_scale", ".v_scale", ".q_scale", ".prob_scale")):
# Try to remap the scale name first
remapped_name = maybe_remap_kv_scale_name(name, params_dict)
if remapped_name is not None and remapped_name in params_dict:
# Successfully remapped, use the remapped name
param = params_dict[remapped_name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
loaded_params.add(remapped_name)
continue
# If remapping failed, continue with normal processing
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
# Adapted from: https://github.com/huggingface/transformers/blob/v4.54.1/src/transformers/models/siglip/modeling_siglip.py#L200
class SiglipTextEmbeddings(nn.Module):
def __init__(self, config: SiglipTextConfig):
super().__init__()
self.config = config
self.token_embedding = VocabParallelEmbedding(
config.vocab_size, config.hidden_size
)
self.position_embedding = VocabParallelEmbedding(
config.max_position_embeddings, config.hidden_size
)
self.register_buffer(
"position_ids",
torch.arange(config.max_position_embeddings).expand((1, -1)),
persistent=False,
)
def forward(
self,
input_ids: torch.Tensor | None,
position_ids: torch.Tensor,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
# Assume EOS token corresponds to CLS token in text model
@default_pooling_type("CLS")
@MULTIMODAL_REGISTRY.register_processor(
SiglipMultiModalProcessor,
info=SiglipProcessingInfo,
dummy_inputs=SiglipDummyInputsBuilder,
)
class SiglipEmbeddingModel(nn.Module, SupportsMultiModal, SupportsQuant):
is_pooling_model = True
packed_modules_mapping = {"qkv_proj": ["q_proj", "k_proj", "v_proj"]}
merge_by_field_config = True
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
if modality.startswith("image"):
return None
raise ValueError("Only image modality is supported")
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config: SiglipConfig = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
self.config = config
self.multimodal_config = multimodal_config
if hasattr(config, "num_labels"):
config.num_labels = 0
text_config = config.text_config
vision_config = config.vision_config
self.text_embed_dim = text_config.hidden_size
self.vision_embed_dim = vision_config.hidden_size
self.text_model = SiglipTextTransformer(
text_config,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "text_model"),
)
self.vision_model = SiglipVisionTransformer(
vision_config,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "vision_model"),
)
self.text_projection_size = text_config.projection_size
pooler_config = vllm_config.model_config.pooler_config
assert pooler_config is not None
self.pooler_config = pooler_config
self.pooler = DispatchPooler(
{
"token_embed": Pooler.for_token_embed(pooler_config),
"embed": Pooler.for_embed(pooler_config),
}
)
self._is_text_input = True
def get_text_features(
self,
input_ids: torch.Tensor | None,
position_ids: torch.Tensor,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
last_hidden_state = self.text_model(
input_ids=input_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
)
text_features = self.text_model.head(last_hidden_state)
# Flip to extract CLS token (first token after reversal) for pooling
text_features = text_features.flip(0)
return text_features
def get_image_features(
self,
pixel_values: torch.Tensor,
feature_select_strategy: VisionFeatureSelectStrategy | None = None,
) -> torch.Tensor:
if feature_select_strategy is None:
feature_select_strategy = _get_vision_feature_select_strategy(
self.pooler_config.pooling_type
)
pooled_output = self.vision_model(
pixel_values=pixel_values,
select_layers=None,
feature_select_strategy=feature_select_strategy,
)
return pooled_output
def _parse_and_validate_image_input(
self, **kwargs: object
) -> SiglipImagePixelInputs | None:
pixel_values = kwargs.pop("pixel_values", None)
if pixel_values is None:
return None
expected_h = expected_w = self.config.vision_config.image_size
return SiglipImagePixelInputs(
type="pixel_values",
data=pixel_values,
resolve_bindings={"h": expected_h, "w": expected_w},
)
def _process_image_inputs(self, inputs: SiglipImagePixelInputs) -> torch.Tensor:
pixel_values = inputs["data"]
return self.get_image_features(pixel_values)
def get_language_model(self) -> torch.nn.Module:
return self.text_model
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: MultiModalEmbeddings | None = None,
*,
is_multimodal: torch.Tensor | None = None,
handle_oov_mm_token: bool = False,
) -> torch.Tensor:
self._is_text_input = (
multimodal_embeddings is None or len(multimodal_embeddings) == 0
)
if multimodal_embeddings is None or is_multimodal is None:
return super().get_input_embeddings(input_ids)
return super().get_input_embeddings(
input_ids,
multimodal_embeddings=multimodal_embeddings,
is_multimodal=is_multimodal,
handle_oov_mm_token=handle_oov_mm_token,
)
def get_multimodal_embeddings(self, **kwargs: object) -> MultiModalEmbeddings:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is None:
return []
vision_embeddings = self._process_image_inputs(image_input)
return vision_embeddings
def forward(
self,
input_ids: torch.Tensor | None,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs: object,
) -> torch.Tensor:
if intermediate_tensors is not None:
raise RuntimeError("PP is not supported for this model")
# Multimodal inputs (image embeddings)
if not self._is_text_input:
return inputs_embeds
return self.get_text_features(input_ids, positions, inputs_embeds)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
loader = AutoWeightsLoader(
self,
skip_substrs=[".position_ids"],
ignore_unexpected_prefixes=["logit_scale.", "logit_bias."],
)
return loader.load_weights(weights)