mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-14 10:35:01 +08:00
1136 lines
38 KiB
Python
1136 lines
38 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Implementation of SiglipVisionModel intended to be only used
|
|
within a vision language model."""
|
|
|
|
import math
|
|
from collections.abc import Iterable, Mapping
|
|
from functools import cached_property
|
|
from typing import Annotated, Literal
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import (
|
|
BatchFeature,
|
|
SiglipConfig,
|
|
SiglipProcessor,
|
|
SiglipTextConfig,
|
|
SiglipVisionConfig,
|
|
)
|
|
|
|
from vllm.attention.layer import MultiHeadAttention
|
|
from vllm.config import VllmConfig
|
|
from vllm.config.multimodal import BaseDummyOptions
|
|
from vllm.distributed import divide, get_tensor_model_parallel_world_size
|
|
from vllm.model_executor.layers.activation import get_act_fn
|
|
from vllm.model_executor.layers.linear import (
|
|
ColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.pooler import DispatchPooler, Pooler
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
|
|
from vllm.model_executor.model_loader.weight_utils import (
|
|
default_weight_loader,
|
|
maybe_remap_kv_scale_name,
|
|
)
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (
|
|
MultiModalDataDict,
|
|
MultiModalFieldConfig,
|
|
MultiModalInputs,
|
|
MultiModalKwargsItems,
|
|
MultiModalUUIDDict,
|
|
)
|
|
from vllm.multimodal.parse import ImageProcessorItems, ImageSize, MultiModalDataItems
|
|
from vllm.multimodal.processing import (
|
|
BaseMultiModalProcessor,
|
|
BaseProcessingInfo,
|
|
PromptIndexTargets,
|
|
PromptReplacement,
|
|
PromptUpdate,
|
|
)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
|
|
|
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsQuant
|
|
from .interfaces_base import default_pooling_type
|
|
from .utils import AutoWeightsLoader, maybe_prefix
|
|
from .vision import (
|
|
VisionEncoderInfo,
|
|
VisionFeatureSelectStrategy,
|
|
VisionFeatureSelectStrategyStr,
|
|
get_num_selected_vision_tokens,
|
|
resolve_visual_encoder_outputs,
|
|
)
|
|
|
|
|
|
class SiglipImagePixelInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- bn: Batch size * number of images
|
|
- c: Number of channels (3)
|
|
- h: Height of each image
|
|
- w: Width of each image
|
|
"""
|
|
|
|
type: Literal["pixel_values"]
|
|
data: Annotated[torch.Tensor, TensorShape("bn", 3, "h", "w")]
|
|
|
|
|
|
_POOLING_TYPE_TO_STRATEGY: dict[str, VisionFeatureSelectStrategyStr] = {
|
|
"MEAN": "full",
|
|
"ALL": "full",
|
|
"CLS": "class",
|
|
}
|
|
|
|
|
|
def _get_vision_feature_select_strategy(
|
|
pooling_type: str,
|
|
) -> VisionFeatureSelectStrategyStr:
|
|
try:
|
|
return _POOLING_TYPE_TO_STRATEGY[pooling_type]
|
|
except KeyError:
|
|
raise ValueError(
|
|
f"No feature selection strategy is defined for "
|
|
f"pooling_type: {pooling_type!r}"
|
|
) from None
|
|
|
|
|
|
class SiglipProcessingInfo(BaseProcessingInfo):
|
|
def get_hf_config(self):
|
|
return self.ctx.get_hf_config(SiglipConfig)
|
|
|
|
def get_vision_encoder_info(self):
|
|
return SiglipEncoderInfo(self.get_hf_config())
|
|
|
|
def get_hf_processor(self, **kwargs: object):
|
|
return self.ctx.get_hf_processor(SiglipProcessor, **kwargs)
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
|
|
return {"image": 1}
|
|
|
|
def get_num_image_tokens(
|
|
self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
) -> int:
|
|
vision_encoder_info = self.get_vision_encoder_info()
|
|
|
|
pooler_config = self.ctx.model_config.pooler_config
|
|
assert pooler_config is not None
|
|
|
|
return get_num_selected_vision_tokens(
|
|
vision_encoder_info.get_num_image_tokens(
|
|
image_width=image_width,
|
|
image_height=image_height,
|
|
),
|
|
_get_vision_feature_select_strategy(pooler_config.pooling_type),
|
|
)
|
|
|
|
def get_image_size_with_most_features(self) -> ImageSize:
|
|
vision_encoder_info = self.get_vision_encoder_info()
|
|
width = height = vision_encoder_info.get_image_size()
|
|
return ImageSize(width=width, height=height)
|
|
|
|
def get_max_image_tokens(self) -> int:
|
|
target_width, target_height = self.get_image_size_with_most_features()
|
|
|
|
return self.get_num_image_tokens(
|
|
image_width=target_width, image_height=target_height
|
|
)
|
|
|
|
|
|
class SiglipDummyInputsBuilder(BaseDummyInputsBuilder[SiglipProcessingInfo]):
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
return ""
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
mm_options: Mapping[str, BaseDummyOptions] | None = None,
|
|
) -> MultiModalDataDict:
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
target_width, target_height = self.info.get_image_size_with_most_features()
|
|
|
|
image_overrides = mm_options.get("image") if mm_options else None
|
|
|
|
return {
|
|
"image": self._get_dummy_images(
|
|
width=target_width,
|
|
height=target_height,
|
|
num_images=num_images,
|
|
overrides=image_overrides,
|
|
)
|
|
}
|
|
|
|
|
|
class SiglipMultiModalProcessor(BaseMultiModalProcessor[SiglipProcessingInfo]):
|
|
@cached_property
|
|
def image_token_id(self) -> int:
|
|
tokenizer = self.info.get_tokenizer()
|
|
dummy_token_id = next(
|
|
token_id
|
|
for token_id in range(tokenizer.vocab_size)
|
|
if token_id not in tokenizer.all_special_ids
|
|
)
|
|
|
|
return dummy_token_id
|
|
|
|
def apply(
|
|
self,
|
|
prompt: str | list[int],
|
|
mm_data: MultiModalDataDict,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
tokenization_kwargs: Mapping[str, object] | None = None,
|
|
*,
|
|
mm_uuids: MultiModalUUIDDict | None = None,
|
|
) -> MultiModalInputs:
|
|
if prompt and mm_data:
|
|
raise ValueError(
|
|
"Siglip accepts text-only or image-only inputs, not both! "
|
|
"Image-only inputs means passing an image with an empty text "
|
|
"prompt."
|
|
)
|
|
|
|
if mm_data:
|
|
# For multi-modal data, the prompt after processing should
|
|
# only contain the image token
|
|
tokenization_kwargs = {
|
|
**(tokenization_kwargs or {}),
|
|
"add_special_tokens": False,
|
|
}
|
|
|
|
return super().apply(
|
|
prompt=prompt,
|
|
mm_data=mm_data,
|
|
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
tokenization_kwargs=tokenization_kwargs,
|
|
mm_uuids=mm_uuids,
|
|
)
|
|
|
|
def _hf_processor_applies_updates(
|
|
self,
|
|
prompt_text: str,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
tokenization_kwargs: Mapping[str, object],
|
|
) -> bool:
|
|
return False
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return dict(pixel_values=MultiModalFieldConfig.batched("image"))
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargsItems,
|
|
) -> list[PromptUpdate]:
|
|
image_token_id = self.image_token_id
|
|
|
|
def get_replacement(item_idx: int):
|
|
images = mm_items.get_items("image", ImageProcessorItems)
|
|
image_size = images.get_image_size(item_idx)
|
|
|
|
num_image_tokens = self.info.get_num_image_tokens(
|
|
image_width=image_size.width, image_height=image_size.height
|
|
)
|
|
return [image_token_id] * num_image_tokens
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="image",
|
|
target=PromptIndexTargets.start(),
|
|
replacement=get_replacement,
|
|
),
|
|
]
|
|
|
|
|
|
class SiglipEncoderInfo(VisionEncoderInfo[SiglipVisionConfig]):
|
|
def get_num_image_tokens(
|
|
self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
) -> int:
|
|
return self.get_patch_grid_length() ** 2
|
|
|
|
def get_image_size(self) -> int:
|
|
return self.vision_config.image_size
|
|
|
|
def get_patch_size(self) -> int:
|
|
return self.vision_config.patch_size
|
|
|
|
def get_patch_grid_length(self) -> int:
|
|
image_size, patch_size = self.get_image_size(), self.get_patch_size()
|
|
return image_size // patch_size
|
|
|
|
|
|
# Adapted from https://github.com/huggingface/transformers/blob/v4.43.3/src/transformers/models/siglip/modeling_siglip.py#L249 # noqa
|
|
class SiglipVisionEmbeddings(nn.Module):
|
|
def __init__(self, config: SiglipVisionConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.image_size = config.image_size
|
|
self.patch_size = config.patch_size
|
|
|
|
self.patch_embedding = nn.Conv2d(
|
|
in_channels=config.num_channels,
|
|
out_channels=self.embed_dim,
|
|
kernel_size=self.patch_size,
|
|
stride=self.patch_size,
|
|
padding="valid",
|
|
)
|
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2
|
|
self.num_positions = self.num_patches
|
|
self.position_embedding = VocabParallelEmbedding(
|
|
self.num_positions, self.embed_dim
|
|
)
|
|
self.register_buffer(
|
|
"position_ids",
|
|
torch.arange(self.num_positions, dtype=torch.int64).expand((1, -1)),
|
|
persistent=False,
|
|
)
|
|
|
|
def interpolate_pos_encoding(
|
|
self, embeddings: torch.Tensor, height: int, width: int
|
|
) -> torch.Tensor:
|
|
"""
|
|
This method is an adapted method for SigLIP (due to SigLIP not having
|
|
class embedding unlike other ViTs) that allows the model to interpolate
|
|
the pre-trained position encodings such that it can be usable on higher
|
|
resolution images.
|
|
|
|
Source:
|
|
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
|
|
"""
|
|
position_embeddings = self.position_embedding.weight.unsqueeze(0)
|
|
num_patches = embeddings.shape[1]
|
|
num_positions = position_embeddings.shape[1]
|
|
if num_patches == num_positions and height == width:
|
|
return position_embeddings
|
|
|
|
dim = embeddings.shape[-1]
|
|
height = height // self.patch_size
|
|
width = width // self.patch_size
|
|
# we add a small number to avoid floating point error
|
|
# in the interpolation
|
|
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
|
height, width = height + 0.1, width + 0.1
|
|
|
|
patch_pos_embed = position_embeddings.reshape(
|
|
1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim
|
|
)
|
|
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
|
patch_pos_embed = nn.functional.interpolate(
|
|
patch_pos_embed,
|
|
scale_factor=(
|
|
height / math.sqrt(num_positions),
|
|
width / math.sqrt(num_positions),
|
|
),
|
|
mode="bicubic",
|
|
align_corners=False,
|
|
)
|
|
if (
|
|
int(height) != patch_pos_embed.shape[-2]
|
|
or int(width) != patch_pos_embed.shape[-1]
|
|
):
|
|
raise ValueError(
|
|
"Width or height does not match with "
|
|
"the interpolated position embeddings"
|
|
)
|
|
|
|
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
|
return patch_pos_embed
|
|
|
|
def forward(
|
|
self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False
|
|
) -> torch.Tensor:
|
|
_, _, height, width = pixel_values.shape
|
|
target_dtype = self.patch_embedding.weight.dtype
|
|
patch_embeds = self.patch_embedding(
|
|
pixel_values.to(dtype=target_dtype)
|
|
) # shape = [*, width, grid, grid]
|
|
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
|
|
|
if interpolate_pos_encoding:
|
|
embeddings += self.interpolate_pos_encoding(embeddings, height, width)
|
|
else:
|
|
embeddings += self.position_embedding(self.position_ids)
|
|
return embeddings
|
|
|
|
|
|
class SiglipAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: SiglipVisionConfig | SiglipTextConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
*,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = self.embed_dim // self.num_heads
|
|
if self.head_dim * self.num_heads != self.embed_dim:
|
|
raise ValueError(
|
|
f"embed_dim must be divisible by num_heads (got "
|
|
"`embed_dim`: {self.embed_dim} and `num_heads`:"
|
|
f" {self.num_heads})."
|
|
)
|
|
|
|
self.scale = self.head_dim**-0.5
|
|
self.dropout = config.attention_dropout
|
|
self.qkv_proj = QKVParallelLinear(
|
|
hidden_size=self.embed_dim,
|
|
head_size=self.head_dim,
|
|
total_num_heads=self.num_heads,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
|
|
self.out_proj = RowParallelLinear(
|
|
input_size=self.embed_dim,
|
|
output_size=self.embed_dim,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.out_proj",
|
|
)
|
|
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.num_heads_per_partition = divide(self.num_heads, self.tp_size)
|
|
|
|
self.attn = MultiHeadAttention(
|
|
self.num_heads_per_partition, self.head_dim, self.scale
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> tuple[torch.Tensor, None]:
|
|
"""Input shape: Batch x Time x Channel"""
|
|
qkv_states, _ = self.qkv_proj(hidden_states)
|
|
query_states, key_states, value_states = qkv_states.chunk(3, dim=-1)
|
|
|
|
needs_unsqueeze = query_states.ndim == 2
|
|
if needs_unsqueeze:
|
|
query_states, key_states, value_states = (
|
|
query_states.unsqueeze(0),
|
|
key_states.unsqueeze(0),
|
|
value_states.unsqueeze(0),
|
|
)
|
|
|
|
out = self.attn(query_states, key_states, value_states)
|
|
|
|
if needs_unsqueeze:
|
|
out, query_states, key_states, value_states = (
|
|
out.squeeze(0),
|
|
query_states.squeeze(0),
|
|
key_states.squeeze(0),
|
|
value_states.squeeze(0),
|
|
)
|
|
|
|
attn_output, _ = self.out_proj(out)
|
|
|
|
return attn_output, None
|
|
|
|
|
|
class SiglipMLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: SiglipVisionConfig | SiglipTextConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
self.activation_fn = get_act_fn(config.hidden_act)
|
|
# Special handling for BNB and torchao quantization
|
|
if quant_config and quant_config.get_name() in ["bitsandbytes", "torchao"]:
|
|
quantizable = True
|
|
else:
|
|
# For other quantization, we require the hidden size to be a
|
|
# multiple of 64
|
|
quantizable = (
|
|
config.hidden_size % 64 == 0 and config.intermediate_size % 64 == 0
|
|
)
|
|
self.fc1 = ColumnParallelLinear(
|
|
config.hidden_size,
|
|
config.intermediate_size,
|
|
quant_config=quant_config if quantizable else None,
|
|
prefix=f"{prefix}.fc1",
|
|
)
|
|
self.fc2 = RowParallelLinear(
|
|
config.intermediate_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config if quantizable else None,
|
|
prefix=f"{prefix}.fc2",
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states, _ = self.fc1(hidden_states)
|
|
hidden_states = self.activation_fn(hidden_states)
|
|
hidden_states, _ = self.fc2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class SiglipEncoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: SiglipVisionConfig | SiglipTextConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
*,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.embed_dim = config.hidden_size
|
|
|
|
self.self_attn = SiglipAttention(
|
|
config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.self_attn",
|
|
)
|
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
self.mlp = SiglipMLP(
|
|
config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp",
|
|
)
|
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> tuple[torch.Tensor, None]:
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.layer_norm1(hidden_states)
|
|
hidden_states, _ = self.self_attn(hidden_states=hidden_states)
|
|
hidden_states += residual
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.layer_norm2(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states += residual
|
|
|
|
return hidden_states, None
|
|
|
|
|
|
class SiglipEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: SiglipVisionConfig | SiglipTextConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
num_hidden_layers_override: int | None = None,
|
|
*,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
if num_hidden_layers_override is None:
|
|
num_hidden_layers = config.num_hidden_layers
|
|
else:
|
|
num_hidden_layers = num_hidden_layers_override
|
|
|
|
self.layers = nn.ModuleList(
|
|
[
|
|
SiglipEncoderLayer(
|
|
config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.layers.{layer_idx}",
|
|
)
|
|
for layer_idx in range(num_hidden_layers)
|
|
]
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
inputs_embeds: torch.Tensor,
|
|
return_all_hidden_states: bool,
|
|
) -> torch.Tensor | list[torch.Tensor]:
|
|
hidden_states_pool = [inputs_embeds]
|
|
hidden_states = inputs_embeds
|
|
|
|
for encoder_layer in self.layers:
|
|
hidden_states, _ = encoder_layer(hidden_states)
|
|
if return_all_hidden_states:
|
|
hidden_states_pool.append(hidden_states)
|
|
# If we have multiple feature sample layers, we return all hidden
|
|
# states in order and grab the ones we need by index.
|
|
if return_all_hidden_states:
|
|
return hidden_states_pool
|
|
return hidden_states
|
|
|
|
|
|
class SiglipTextTransformer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: SiglipTextConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
*,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
embed_dim = config.hidden_size
|
|
|
|
self.embeddings = SiglipTextEmbeddings(config)
|
|
|
|
self.encoder = SiglipEncoder(
|
|
config=config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.encoder",
|
|
)
|
|
|
|
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
self.head = nn.Linear(embed_dim, config.projection_size)
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embeddings.token_embedding(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor | None,
|
|
position_ids: torch.Tensor,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.embeddings(input_ids, position_ids, inputs_embeds)
|
|
|
|
last_hidden_state = self.encoder(
|
|
inputs_embeds=hidden_states, return_all_hidden_states=False
|
|
)
|
|
|
|
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
|
|
|
return last_hidden_state
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
|
|
for name, loaded_weight in weights:
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class SiglipMultiheadAttentionPoolingHead(nn.Module):
|
|
"""Multihead Attention Pooling."""
|
|
|
|
def __init__(
|
|
self,
|
|
config: SiglipVisionConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
|
# TODO(ChristopherCho): Implement vLLM version of MultiheadAttention
|
|
self.attention = torch.nn.MultiheadAttention(
|
|
config.hidden_size, config.num_attention_heads, batch_first=True
|
|
)
|
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
self.mlp = SiglipMLP(
|
|
config=config, quant_config=quant_config, prefix=f"{prefix}.mlp"
|
|
)
|
|
|
|
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
|
batch_size = hidden_state.size(0)
|
|
|
|
probe = self.probe.expand(batch_size, -1, -1)
|
|
|
|
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
|
|
|
|
residual = hidden_state
|
|
hidden_state = self.layernorm(hidden_state)
|
|
hidden_state = self.mlp(hidden_state)
|
|
hidden_state += residual
|
|
|
|
pooled = hidden_state[:, 0]
|
|
|
|
return pooled.unsqueeze(1)
|
|
|
|
|
|
class SiglipVisionTransformer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: SiglipVisionConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
*,
|
|
num_hidden_layers_override: int | None = None,
|
|
require_post_norm: bool | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
embed_dim = config.hidden_size
|
|
|
|
self.embeddings = SiglipVisionEmbeddings(config)
|
|
|
|
self.encoder = SiglipEncoder(
|
|
config,
|
|
quant_config=quant_config,
|
|
num_hidden_layers_override=num_hidden_layers_override,
|
|
prefix=f"{prefix}.encoder",
|
|
)
|
|
|
|
num_hidden_layers = config.num_hidden_layers
|
|
if len(self.encoder.layers) > config.num_hidden_layers:
|
|
raise ValueError(
|
|
f"The original encoder only has {num_hidden_layers} "
|
|
f"layers, but you requested {len(self.encoder.layers)} layers."
|
|
)
|
|
|
|
# If possible, skip post_layernorm to conserve memory
|
|
if require_post_norm is None:
|
|
require_post_norm = len(self.encoder.layers) == num_hidden_layers
|
|
|
|
if require_post_norm:
|
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
else:
|
|
self.post_layernorm = None
|
|
|
|
self.use_head = (
|
|
True if not hasattr(config, "vision_use_head") else config.vision_use_head
|
|
)
|
|
if self.use_head:
|
|
self.head = SiglipMultiheadAttentionPoolingHead(
|
|
config=config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.head",
|
|
)
|
|
|
|
@property
|
|
def dtype(self):
|
|
return next(self.parameters()).dtype
|
|
|
|
@property
|
|
def device(self):
|
|
return next(self.parameters()).device
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values: torch.Tensor,
|
|
*,
|
|
interpolate_pos_encoding: bool = False,
|
|
select_layers: list[int] | None = None,
|
|
feature_select_strategy: VisionFeatureSelectStrategy | None = None,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.embeddings(
|
|
pixel_values,
|
|
interpolate_pos_encoding=interpolate_pos_encoding,
|
|
)
|
|
# Produces either the last layer output or all of the hidden states,
|
|
# depending on if we have select_layers or not
|
|
encoder_outputs = self.encoder(
|
|
inputs_embeds=hidden_states,
|
|
return_all_hidden_states=select_layers is not None,
|
|
)
|
|
|
|
if self.post_layernorm is not None:
|
|
encoder_outputs = self.post_layernorm(encoder_outputs)
|
|
|
|
if self.use_head:
|
|
encoder_outputs = self.head(encoder_outputs)
|
|
|
|
# stacks feature layers if needed
|
|
encoder_outputs = resolve_visual_encoder_outputs(
|
|
encoder_outputs,
|
|
None,
|
|
select_layers=select_layers,
|
|
max_possible_layers=self.config.num_hidden_layers,
|
|
feature_select_strategy=feature_select_strategy,
|
|
)
|
|
|
|
return encoder_outputs
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
layer_count = len(self.encoder.layers)
|
|
|
|
for name, loaded_weight in weights:
|
|
# post_layernorm is not needed in SiglipVisionTransformer
|
|
if name.startswith("post_layernorm") and self.post_layernorm is None:
|
|
continue
|
|
|
|
# omit layers when num_hidden_layers_override is set
|
|
if name.startswith("encoder.layers"):
|
|
layer_idx = int(name.split(".")[2])
|
|
if layer_idx >= layer_count:
|
|
continue
|
|
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class SiglipVisionModel(nn.Module):
|
|
config_class = SiglipVisionConfig
|
|
main_input_name = "pixel_values"
|
|
|
|
def __init__(
|
|
self,
|
|
config: SiglipVisionConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
*,
|
|
num_hidden_layers_override: int | None = None,
|
|
require_post_norm: bool | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.vision_model = SiglipVisionTransformer(
|
|
config,
|
|
quant_config,
|
|
num_hidden_layers_override=num_hidden_layers_override,
|
|
require_post_norm=require_post_norm,
|
|
prefix=f"{prefix}.vision_model",
|
|
)
|
|
|
|
def get_input_embeddings(self) -> nn.Module:
|
|
return self.vision_model.embeddings.patch_embedding
|
|
|
|
@property
|
|
def dtype(self):
|
|
return self.vision_model.dtype
|
|
|
|
@property
|
|
def device(self):
|
|
return self.vision_model.device
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values: torch.Tensor,
|
|
interpolate_pos_encoding: bool = False,
|
|
select_layers: list[int] | None = None,
|
|
feature_select_strategy: VisionFeatureSelectStrategy | None = None,
|
|
) -> torch.Tensor:
|
|
return self.vision_model(
|
|
pixel_values=pixel_values,
|
|
interpolate_pos_encoding=interpolate_pos_encoding,
|
|
select_layers=select_layers,
|
|
feature_select_strategy=feature_select_strategy,
|
|
)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
layer_count = len(self.vision_model.encoder.layers)
|
|
|
|
for name, loaded_weight in weights:
|
|
# post_layernorm is optional in SiglipVisionModel
|
|
if (
|
|
name.startswith("vision_model.post_layernorm")
|
|
and self.vision_model.post_layernorm is None
|
|
):
|
|
continue
|
|
|
|
# omit layers when num_hidden_layers_override is set
|
|
if name.startswith("vision_model.encoder.layers"):
|
|
layer_idx = int(name.split(".")[3])
|
|
if layer_idx >= layer_count:
|
|
continue
|
|
|
|
# Check if this is a scale parameter that needs remapping first
|
|
if name.endswith((".k_scale", ".v_scale", ".q_scale", ".prob_scale")):
|
|
# Try to remap the scale name first
|
|
remapped_name = maybe_remap_kv_scale_name(name, params_dict)
|
|
if remapped_name is not None and remapped_name in params_dict:
|
|
# Successfully remapped, use the remapped name
|
|
param = params_dict[remapped_name]
|
|
weight_loader = getattr(
|
|
param, "weight_loader", default_weight_loader
|
|
)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(remapped_name)
|
|
continue
|
|
# If remapping failed, continue with normal processing
|
|
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
# Adapted from: https://github.com/huggingface/transformers/blob/v4.54.1/src/transformers/models/siglip/modeling_siglip.py#L200
|
|
class SiglipTextEmbeddings(nn.Module):
|
|
def __init__(self, config: SiglipTextConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
self.token_embedding = VocabParallelEmbedding(
|
|
config.vocab_size, config.hidden_size
|
|
)
|
|
|
|
self.position_embedding = VocabParallelEmbedding(
|
|
config.max_position_embeddings, config.hidden_size
|
|
)
|
|
|
|
self.register_buffer(
|
|
"position_ids",
|
|
torch.arange(config.max_position_embeddings).expand((1, -1)),
|
|
persistent=False,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor | None,
|
|
position_ids: torch.Tensor,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor:
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.token_embedding(input_ids)
|
|
|
|
position_embeddings = self.position_embedding(position_ids)
|
|
embeddings = inputs_embeds + position_embeddings
|
|
return embeddings
|
|
|
|
|
|
# Assume EOS token corresponds to CLS token in text model
|
|
@default_pooling_type("CLS")
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
SiglipMultiModalProcessor,
|
|
info=SiglipProcessingInfo,
|
|
dummy_inputs=SiglipDummyInputsBuilder,
|
|
)
|
|
class SiglipEmbeddingModel(nn.Module, SupportsMultiModal, SupportsQuant):
|
|
is_pooling_model = True
|
|
|
|
packed_modules_mapping = {"qkv_proj": ["q_proj", "k_proj", "v_proj"]}
|
|
merge_by_field_config = True
|
|
|
|
@classmethod
|
|
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
|
|
if modality.startswith("image"):
|
|
return None
|
|
|
|
raise ValueError("Only image modality is supported")
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config: SiglipConfig = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
self.config = config
|
|
self.multimodal_config = multimodal_config
|
|
|
|
if hasattr(config, "num_labels"):
|
|
config.num_labels = 0
|
|
|
|
text_config = config.text_config
|
|
vision_config = config.vision_config
|
|
|
|
self.text_embed_dim = text_config.hidden_size
|
|
self.vision_embed_dim = vision_config.hidden_size
|
|
|
|
self.text_model = SiglipTextTransformer(
|
|
text_config,
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "text_model"),
|
|
)
|
|
self.vision_model = SiglipVisionTransformer(
|
|
vision_config,
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "vision_model"),
|
|
)
|
|
|
|
self.text_projection_size = text_config.projection_size
|
|
|
|
pooler_config = vllm_config.model_config.pooler_config
|
|
assert pooler_config is not None
|
|
self.pooler_config = pooler_config
|
|
|
|
self.pooler = DispatchPooler(
|
|
{
|
|
"token_embed": Pooler.for_token_embed(pooler_config),
|
|
"embed": Pooler.for_embed(pooler_config),
|
|
}
|
|
)
|
|
|
|
self._is_text_input = True
|
|
|
|
def get_text_features(
|
|
self,
|
|
input_ids: torch.Tensor | None,
|
|
position_ids: torch.Tensor,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor:
|
|
last_hidden_state = self.text_model(
|
|
input_ids=input_ids,
|
|
position_ids=position_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
)
|
|
text_features = self.text_model.head(last_hidden_state)
|
|
# Flip to extract CLS token (first token after reversal) for pooling
|
|
text_features = text_features.flip(0)
|
|
return text_features
|
|
|
|
def get_image_features(
|
|
self,
|
|
pixel_values: torch.Tensor,
|
|
feature_select_strategy: VisionFeatureSelectStrategy | None = None,
|
|
) -> torch.Tensor:
|
|
if feature_select_strategy is None:
|
|
feature_select_strategy = _get_vision_feature_select_strategy(
|
|
self.pooler_config.pooling_type
|
|
)
|
|
|
|
pooled_output = self.vision_model(
|
|
pixel_values=pixel_values,
|
|
select_layers=None,
|
|
feature_select_strategy=feature_select_strategy,
|
|
)
|
|
|
|
return pooled_output
|
|
|
|
def _parse_and_validate_image_input(
|
|
self, **kwargs: object
|
|
) -> SiglipImagePixelInputs | None:
|
|
pixel_values = kwargs.pop("pixel_values", None)
|
|
if pixel_values is None:
|
|
return None
|
|
|
|
expected_h = expected_w = self.config.vision_config.image_size
|
|
return SiglipImagePixelInputs(
|
|
type="pixel_values",
|
|
data=pixel_values,
|
|
resolve_bindings={"h": expected_h, "w": expected_w},
|
|
)
|
|
|
|
def _process_image_inputs(self, inputs: SiglipImagePixelInputs) -> torch.Tensor:
|
|
pixel_values = inputs["data"]
|
|
|
|
return self.get_image_features(pixel_values)
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.text_model
|
|
|
|
def get_input_embeddings(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
multimodal_embeddings: MultiModalEmbeddings | None = None,
|
|
*,
|
|
is_multimodal: torch.Tensor | None = None,
|
|
handle_oov_mm_token: bool = False,
|
|
) -> torch.Tensor:
|
|
self._is_text_input = (
|
|
multimodal_embeddings is None or len(multimodal_embeddings) == 0
|
|
)
|
|
|
|
if multimodal_embeddings is None or is_multimodal is None:
|
|
return super().get_input_embeddings(input_ids)
|
|
|
|
return super().get_input_embeddings(
|
|
input_ids,
|
|
multimodal_embeddings=multimodal_embeddings,
|
|
is_multimodal=is_multimodal,
|
|
handle_oov_mm_token=handle_oov_mm_token,
|
|
)
|
|
|
|
def get_multimodal_embeddings(self, **kwargs: object) -> MultiModalEmbeddings:
|
|
image_input = self._parse_and_validate_image_input(**kwargs)
|
|
if image_input is None:
|
|
return []
|
|
|
|
vision_embeddings = self._process_image_inputs(image_input)
|
|
return vision_embeddings
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor | None,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs: object,
|
|
) -> torch.Tensor:
|
|
if intermediate_tensors is not None:
|
|
raise RuntimeError("PP is not supported for this model")
|
|
|
|
# Multimodal inputs (image embeddings)
|
|
if not self._is_text_input:
|
|
return inputs_embeds
|
|
|
|
return self.get_text_features(input_ids, positions, inputs_embeds)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
|
loader = AutoWeightsLoader(
|
|
self,
|
|
skip_substrs=[".position_ids"],
|
|
ignore_unexpected_prefixes=["logit_scale.", "logit_bias."],
|
|
)
|
|
|
|
return loader.load_weights(weights)
|