Harry Mellor 0bd7f8fca5
Bump Transformers to 4.51.3 (#17116)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-04-25 08:34:34 -07:00

132 lines
4.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""Compare the outputs of HF and vLLM when using greedy sampling.
Run `pytest tests/models/test_models.py`.
"""
import pytest
import torch
from vllm.platforms import current_platform
from ...registry import HF_EXAMPLE_MODELS
from ...utils import check_logprobs_close
# These have unsupported head_dim for FA. We do not
# not have a clean way to fall back, so we fail with
# a clear msg when it happens.
# https://github.com/vllm-project/vllm/issues/14524
REQUIRES_V0 = ["microsoft/phi-2", "stabilityai/stablelm-3b-4e1t"]
# This list contains the model that are using AITER kernel.
# Skip model that are not using AITER tests.
# When more AITER kernels are added, this list will not be
# needed as all the models will be calling AITER kernels
# in parts of the operators
AITER_MODEL_LIST = [
"meta-llama/Llama-3.2-1B-Instruct",
"openbmb/MiniCPM3-4B",
"Qwen/Qwen-7B",
"Qwen/Qwen2.5-0.5B-Instruct",
"ehristoforu/Falcon3-MoE-2x7B-Insruct",
]
# @maybe_test_rocm_aiter
@pytest.mark.parametrize(
"model_arch",
[
pytest.param(
"BloomForCausalLM", # testing alibi slopes
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
),
pytest.param(
"GPT2LMHeadModel", # gpt2
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
),
pytest.param("GPTJForCausalLM"),
pytest.param("GPTBigCodeForCausalLM"),
pytest.param("GPTNeoXForCausalLM"),
pytest.param(
"GemmaForCausalLM", # gemma
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
),
pytest.param("GlmForCausalLM"),
pytest.param(
"LlamaForCausalLM",
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
),
pytest.param(
"MiniCPM3ForCausalLM",
# fused_moe not supported on CPU
marks=[pytest.mark.core_model],
),
pytest.param(
"OPTForCausalLM",
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
),
pytest.param(
"PhiForCausalLM",
marks=[pytest.mark.core_model],
),
pytest.param("QWenLMHeadModel", ),
pytest.param(
"Qwen2ForCausalLM",
marks=[pytest.mark.core_model],
),
pytest.param("StableLmForCausalLM"),
pytest.param("Starcoder2ForCausalLM"),
pytest.param(
"MixtralForCausalLM",
marks=[pytest.mark.cpu_model],
)
])
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("num_logprobs", [5])
@pytest.mark.parametrize(
"use_rocm_aiter", [True, False] if current_platform.is_rocm() else [False])
def test_models(hf_runner, vllm_runner, example_prompts, model_arch: str,
dtype: str, max_tokens: int, num_logprobs: int,
use_rocm_aiter: bool, monkeypatch) -> None:
model = HF_EXAMPLE_MODELS.get_hf_info(model_arch).default
if model in REQUIRES_V0:
monkeypatch.setenv("VLLM_USE_V1", "0")
if use_rocm_aiter and (model in AITER_MODEL_LIST):
monkeypatch.setenv("VLLM_ROCM_USE_AITER", "1")
elif use_rocm_aiter and model not in AITER_MODEL_LIST:
# Skip model that are not using AITER tests.
# When more AITER kernels are added, this list will not be
# needed as all the models will be calling AITER kernels
# in parts of the operators
pytest.skip(f"Skipping '{model}' model test with AITER kernel.")
with hf_runner(model, dtype=dtype) as hf_model:
if model.startswith("THUDM/chatglm3"):
hf_model.model.get_output_embeddings = lambda: \
hf_model.model.transformer.output_layer
hf_outputs = hf_model.generate_greedy_logprobs_limit(
example_prompts, max_tokens, num_logprobs)
with vllm_runner(model, dtype=dtype) as vllm_model:
vllm_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
if use_rocm_aiter:
# this is to ensure that vllm engine
# has deallocated the memory before running the next
# unit tests. On ROCm, when using AITER
# the memory might not be deallocated completely
# before running the next test case
torch.cuda.synchronize()