vllm/tests/lora/test_qwen3moe_tp.py
Jee Jee Li 0384aa7150
[CI/Build] Add gpt-oss LoRA test (#27870)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-31 22:17:21 +08:00

116 lines
4.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# NOTE To avoid overloading the CI pipeline, this test script will not
# be triggered on CI and is primarily intended for local testing and verification.
import vllm
from vllm.lora.request import LoRARequest
from ..utils import multi_gpu_test
MODEL_PATH = "Qwen/Qwen3-30B-A3B"
PROMPT_TEMPLATE = """<|im_start|>user
I want you to act as a SQL terminal in front of an example database, you need only to return the sql command to me.Below is an instruction that describes a task, Write a response that appropriately completes the request.
"
##Instruction:
candidate_poll contains tables such as candidate, people. Table candidate has columns such as Candidate_ID, People_ID, Poll_Source, Date, Support_rate, Consider_rate, Oppose_rate, Unsure_rate. Candidate_ID is the primary key.
Table people has columns such as People_ID, Sex, Name, Date_of_Birth, Height, Weight. People_ID is the primary key.
The People_ID of candidate is the foreign key of People_ID of people.
###Input:
{context}
###Response:<|im_end|>
<|im_start|>assistant""" # noqa: E501
EXPECTED_LORA_OUTPUT = [
"<think>\n\n</think>\n\nSELECT count(*) FROM candidate",
"<think>\n\n</think>\n\nSELECT count(*) FROM candidate",
"<think>\n\n</think>\n\nSELECT poll_source FROM candidate GROUP BY poll_source ORDER BY count(*) DESC LIMIT 1", # noqa: E501
"<think>\n\n</think>\n\nSELECT poll_source FROM candidate GROUP BY poll_source ORDER BY count(*) DESC LIMIT 1", # noqa: E501
]
def generate_and_test(llm: vllm.LLM, lora_path: str, lora_id: int) -> None:
prompts = [
PROMPT_TEMPLATE.format(context="How many candidates are there?"),
PROMPT_TEMPLATE.format(context="Count the number of candidates."),
PROMPT_TEMPLATE.format(
context="Which poll resource provided the most number of candidate information?" # noqa: E501
),
PROMPT_TEMPLATE.format(
context="Return the poll resource associated with the most candidates."
),
]
sampling_params = vllm.SamplingParams(temperature=0, max_tokens=64)
outputs = llm.generate(
prompts,
sampling_params,
lora_request=LoRARequest(str(lora_id), lora_id, lora_path) if lora_id else None,
)
# Print the outputs.
generated_texts: list[str] = []
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text.strip()
generated_texts.append(generated_text)
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
for i in range(len(EXPECTED_LORA_OUTPUT)):
assert generated_texts[i].startswith(EXPECTED_LORA_OUTPUT[i])
def test_qwen3moe_lora(qwen3moe_lora_files):
# We enable enforce_eager=True here to reduce VRAM usage for lora-test CI,
# Otherwise, the lora-test will fail due to CUDA OOM.
llm = vllm.LLM(
MODEL_PATH,
max_model_len=1024,
enable_lora=True,
max_loras=4,
enforce_eager=True,
trust_remote_code=True,
enable_chunked_prefill=True,
)
generate_and_test(llm, qwen3moe_lora_files, lora_id=1)
generate_and_test(llm, qwen3moe_lora_files, lora_id=2)
@multi_gpu_test(num_gpus=2)
def test_qwen3moe_lora_tp2(qwen3moe_lora_files):
llm = vllm.LLM(
MODEL_PATH,
max_model_len=1024,
enable_lora=True,
max_loras=4,
enforce_eager=True,
trust_remote_code=True,
enable_chunked_prefill=True,
tensor_parallel_size=2,
)
generate_and_test(llm, qwen3moe_lora_files, lora_id=1)
generate_and_test(llm, qwen3moe_lora_files, lora_id=2)
@multi_gpu_test(num_gpus=4)
def test_qwen3moe_lora_tp4(qwen3moe_lora_files):
llm = vllm.LLM(
MODEL_PATH,
max_model_len=1024,
enable_lora=True,
max_loras=4,
enforce_eager=True,
trust_remote_code=True,
enable_chunked_prefill=True,
tensor_parallel_size=4,
)
generate_and_test(llm, qwen3moe_lora_files, lora_id=1)
generate_and_test(llm, qwen3moe_lora_files, lora_id=2)