99 lines
3.3 KiB
Python

from functools import lru_cache
from typing import Any, cast
def get_processor(
processor_name: str,
*args: Any,
trust_remote_code: bool = False,
**kwargs: Any,
):
"""Load a processor for the given model name via HuggingFace."""
# don't put this import at the top level
# it will call torch.cuda.device_count()
from transformers import AutoProcessor
from transformers.processing_utils import ProcessorMixin
try:
processor = AutoProcessor.from_pretrained(
processor_name,
*args,
trust_remote_code=trust_remote_code,
**kwargs)
except ValueError as e:
# If the error pertains to the processor class not existing or not
# currently being imported, suggest using the --trust-remote-code flag.
# Unlike AutoTokenizer, AutoProcessor does not separate such errors
if not trust_remote_code:
err_msg = (
"Failed to load the processor. If the processor is "
"a custom processor not yet available in the HuggingFace "
"transformers library, consider setting "
"`trust_remote_code=True` in LLM or using the "
"`--trust-remote-code` flag in the CLI.")
raise RuntimeError(err_msg) from e
else:
raise e
return cast(ProcessorMixin, processor)
cached_get_processor = lru_cache(get_processor)
def get_image_processor(
processor_name: str,
*args: Any,
trust_remote_code: bool = False,
**kwargs: Any,
):
"""Load an image processor for the given model name via HuggingFace."""
# don't put this import at the top level
# it will call torch.cuda.device_count()
from transformers import AutoImageProcessor
from transformers.image_processing_utils import BaseImageProcessor
try:
processor = AutoImageProcessor.from_pretrained(
processor_name,
*args,
trust_remote_code=trust_remote_code,
**kwargs)
except ValueError as e:
# If the error pertains to the processor class not existing or not
# currently being imported, suggest using the --trust-remote-code flag.
# Unlike AutoTokenizer, AutoImageProcessor does not separate such errors
if not trust_remote_code:
err_msg = (
"Failed to load the image processor. If the image processor is "
"a custom processor not yet available in the HuggingFace "
"transformers library, consider setting "
"`trust_remote_code=True` in LLM or using the "
"`--trust-remote-code` flag in the CLI.")
raise RuntimeError(err_msg) from e
else:
raise e
return cast(BaseImageProcessor, processor)
def get_video_processor(
processor_name: str,
*args: Any,
trust_remote_code: bool = False,
**kwargs: Any,
):
"""Load a video processor for the given model name via HuggingFace."""
# don't put this import at the top level
# it will call torch.cuda.device_count()
from transformers.image_processing_utils import BaseImageProcessor
processor = get_processor(
processor_name,
*args,
trust_remote_code=trust_remote_code,
**kwargs,
)
return cast(BaseImageProcessor, processor.video_processor)