mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-12 00:54:39 +08:00
99 lines
3.3 KiB
Python
99 lines
3.3 KiB
Python
from functools import lru_cache
|
|
from typing import Any, cast
|
|
|
|
|
|
def get_processor(
|
|
processor_name: str,
|
|
*args: Any,
|
|
trust_remote_code: bool = False,
|
|
**kwargs: Any,
|
|
):
|
|
"""Load a processor for the given model name via HuggingFace."""
|
|
# don't put this import at the top level
|
|
# it will call torch.cuda.device_count()
|
|
from transformers import AutoProcessor
|
|
from transformers.processing_utils import ProcessorMixin
|
|
|
|
try:
|
|
processor = AutoProcessor.from_pretrained(
|
|
processor_name,
|
|
*args,
|
|
trust_remote_code=trust_remote_code,
|
|
**kwargs)
|
|
except ValueError as e:
|
|
# If the error pertains to the processor class not existing or not
|
|
# currently being imported, suggest using the --trust-remote-code flag.
|
|
# Unlike AutoTokenizer, AutoProcessor does not separate such errors
|
|
if not trust_remote_code:
|
|
err_msg = (
|
|
"Failed to load the processor. If the processor is "
|
|
"a custom processor not yet available in the HuggingFace "
|
|
"transformers library, consider setting "
|
|
"`trust_remote_code=True` in LLM or using the "
|
|
"`--trust-remote-code` flag in the CLI.")
|
|
raise RuntimeError(err_msg) from e
|
|
else:
|
|
raise e
|
|
|
|
return cast(ProcessorMixin, processor)
|
|
|
|
|
|
cached_get_processor = lru_cache(get_processor)
|
|
|
|
|
|
def get_image_processor(
|
|
processor_name: str,
|
|
*args: Any,
|
|
trust_remote_code: bool = False,
|
|
**kwargs: Any,
|
|
):
|
|
"""Load an image processor for the given model name via HuggingFace."""
|
|
# don't put this import at the top level
|
|
# it will call torch.cuda.device_count()
|
|
from transformers import AutoImageProcessor
|
|
from transformers.image_processing_utils import BaseImageProcessor
|
|
|
|
try:
|
|
processor = AutoImageProcessor.from_pretrained(
|
|
processor_name,
|
|
*args,
|
|
trust_remote_code=trust_remote_code,
|
|
**kwargs)
|
|
except ValueError as e:
|
|
# If the error pertains to the processor class not existing or not
|
|
# currently being imported, suggest using the --trust-remote-code flag.
|
|
# Unlike AutoTokenizer, AutoImageProcessor does not separate such errors
|
|
if not trust_remote_code:
|
|
err_msg = (
|
|
"Failed to load the image processor. If the image processor is "
|
|
"a custom processor not yet available in the HuggingFace "
|
|
"transformers library, consider setting "
|
|
"`trust_remote_code=True` in LLM or using the "
|
|
"`--trust-remote-code` flag in the CLI.")
|
|
raise RuntimeError(err_msg) from e
|
|
else:
|
|
raise e
|
|
|
|
return cast(BaseImageProcessor, processor)
|
|
|
|
|
|
def get_video_processor(
|
|
processor_name: str,
|
|
*args: Any,
|
|
trust_remote_code: bool = False,
|
|
**kwargs: Any,
|
|
):
|
|
"""Load a video processor for the given model name via HuggingFace."""
|
|
# don't put this import at the top level
|
|
# it will call torch.cuda.device_count()
|
|
from transformers.image_processing_utils import BaseImageProcessor
|
|
|
|
processor = get_processor(
|
|
processor_name,
|
|
*args,
|
|
trust_remote_code=trust_remote_code,
|
|
**kwargs,
|
|
)
|
|
|
|
return cast(BaseImageProcessor, processor.video_processor)
|