vllm/vllm/engine/metrics.py
Mark McLoughlin 0e98964e94
[V1][Metrics] Remove metrics that were deprecated in 0.8 (#18837)
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
2025-05-28 18:54:12 +00:00

629 lines
26 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import time
from typing import TYPE_CHECKING
from typing import Counter as CollectionsCounter
from typing import Dict, List, Optional, Type, Union, cast
import numpy as np
import prometheus_client
from vllm.config import SupportsMetricsInfo, VllmConfig
from vllm.engine.metrics_types import StatLoggerBase, Stats
from vllm.executor.ray_utils import ray
from vllm.logger import init_logger
if ray is not None:
from ray.util import metrics as ray_metrics
else:
ray_metrics = None
if TYPE_CHECKING:
from vllm.spec_decode.metrics import SpecDecodeWorkerMetrics
logger = init_logger(__name__)
prometheus_client.disable_created_metrics()
# The begin-* and end* here are used by the documentation generator
# to extract the metrics definitions.
# --8<-- [start:metrics-definitions]
class Metrics:
"""
vLLM uses a multiprocessing-based frontend for the OpenAI server.
This means that we need to run prometheus_client in multiprocessing mode
See https://prometheus.github.io/client_python/multiprocess/ for more
details on limitations.
"""
labelname_finish_reason = "finished_reason"
labelname_waiting_lora_adapters = "waiting_lora_adapters"
labelname_running_lora_adapters = "running_lora_adapters"
labelname_max_lora = "max_lora"
_gauge_cls = prometheus_client.Gauge
_counter_cls = prometheus_client.Counter
_histogram_cls = prometheus_client.Histogram
def __init__(self, labelnames: List[str], vllm_config: VllmConfig):
# Unregister any existing vLLM collectors (for CI/CD)
self._unregister_vllm_metrics()
max_model_len = vllm_config.model_config.max_model_len
# Use this flag to hide metrics that were deprecated in
# a previous release and which will be removed future
self.show_hidden_metrics = \
vllm_config.observability_config.show_hidden_metrics
# System stats
# Scheduler State
self.gauge_scheduler_running = self._gauge_cls(
name="vllm:num_requests_running",
documentation="Number of requests currently running on GPU.",
labelnames=labelnames,
multiprocess_mode="sum")
self.gauge_scheduler_waiting = self._gauge_cls(
name="vllm:num_requests_waiting",
documentation="Number of requests waiting to be processed.",
labelnames=labelnames,
multiprocess_mode="sum")
self.gauge_lora_info = self._gauge_cls(
name="vllm:lora_requests_info",
documentation="Running stats on lora requests.",
labelnames=[
self.labelname_running_lora_adapters,
self.labelname_max_lora,
self.labelname_waiting_lora_adapters,
],
multiprocess_mode="livemostrecent",
)
# KV Cache Usage in %
self.gauge_gpu_cache_usage = self._gauge_cls(
name="vllm:gpu_cache_usage_perc",
documentation="GPU KV-cache usage. 1 means 100 percent usage.",
labelnames=labelnames,
multiprocess_mode="sum")
# Iteration stats
self.counter_num_preemption = self._counter_cls(
name="vllm:num_preemptions_total",
documentation="Cumulative number of preemption from the engine.",
labelnames=labelnames)
self.counter_prompt_tokens = self._counter_cls(
name="vllm:prompt_tokens_total",
documentation="Number of prefill tokens processed.",
labelnames=labelnames)
self.counter_generation_tokens = self._counter_cls(
name="vllm:generation_tokens_total",
documentation="Number of generation tokens processed.",
labelnames=labelnames)
self.histogram_iteration_tokens = self._histogram_cls(
name="vllm:iteration_tokens_total",
documentation="Histogram of number of tokens per engine_step.",
labelnames=labelnames,
buckets=[
1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384
])
self.histogram_time_to_first_token = self._histogram_cls(
name="vllm:time_to_first_token_seconds",
documentation="Histogram of time to first token in seconds.",
labelnames=labelnames,
buckets=[
0.001, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.25, 0.5,
0.75, 1.0, 2.5, 5.0, 7.5, 10.0, 20.0, 40.0, 80.0, 160.0, 640.0,
2560.0
])
self.histogram_time_per_output_token = self._histogram_cls(
name="vllm:time_per_output_token_seconds",
documentation="Histogram of time per output token in seconds.",
labelnames=labelnames,
buckets=[
0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75,
1.0, 2.5, 5.0, 7.5, 10.0, 20.0, 40.0, 80.0
])
# Request stats
# Latency
request_latency_buckets = [
0.3, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5, 5.0, 10.0, 15.0, 20.0, 30.0,
40.0, 50.0, 60.0, 120.0, 240.0, 480.0, 960.0, 1920.0, 7680.0
]
self.histogram_e2e_time_request = self._histogram_cls(
name="vllm:e2e_request_latency_seconds",
documentation="Histogram of end to end request latency in seconds.",
labelnames=labelnames,
buckets=request_latency_buckets)
self.histogram_queue_time_request = self._histogram_cls(
name="vllm:request_queue_time_seconds",
documentation=
"Histogram of time spent in WAITING phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets)
self.histogram_inference_time_request = self._histogram_cls(
name="vllm:request_inference_time_seconds",
documentation=
"Histogram of time spent in RUNNING phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets)
self.histogram_prefill_time_request = self._histogram_cls(
name="vllm:request_prefill_time_seconds",
documentation=
"Histogram of time spent in PREFILL phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets)
self.histogram_decode_time_request = self._histogram_cls(
name="vllm:request_decode_time_seconds",
documentation=
"Histogram of time spent in DECODE phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets)
# Metadata
self.histogram_num_prompt_tokens_request = self._histogram_cls(
name="vllm:request_prompt_tokens",
documentation="Number of prefill tokens processed.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len),
)
self.histogram_num_generation_tokens_request = \
self._histogram_cls(
name="vllm:request_generation_tokens",
documentation="Number of generation tokens processed.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len),
)
self.histogram_max_num_generation_tokens_request = self._histogram_cls(
name="vllm:request_max_num_generation_tokens",
documentation=
"Histogram of maximum number of requested generation tokens.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len))
self.histogram_n_request = self._histogram_cls(
name="vllm:request_params_n",
documentation="Histogram of the n request parameter.",
labelnames=labelnames,
buckets=[1, 2, 5, 10, 20],
)
self.histogram_max_tokens_request = self._histogram_cls(
name="vllm:request_params_max_tokens",
documentation="Histogram of the max_tokens request parameter.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len),
)
self.counter_request_success = self._counter_cls(
name="vllm:request_success_total",
documentation="Count of successfully processed requests.",
labelnames=labelnames + [Metrics.labelname_finish_reason])
# Speculative decoding stats
self.gauge_spec_decode_draft_acceptance_rate = self._gauge_cls(
name="vllm:spec_decode_draft_acceptance_rate",
documentation="Speulative token acceptance rate.",
labelnames=labelnames,
multiprocess_mode="sum")
self.gauge_spec_decode_efficiency = self._gauge_cls(
name="vllm:spec_decode_efficiency",
documentation="Speculative decoding system efficiency.",
labelnames=labelnames,
multiprocess_mode="sum")
self.counter_spec_decode_num_accepted_tokens = (self._counter_cls(
name="vllm:spec_decode_num_accepted_tokens_total",
documentation="Number of accepted tokens.",
labelnames=labelnames))
self.counter_spec_decode_num_draft_tokens = self._counter_cls(
name="vllm:spec_decode_num_draft_tokens_total",
documentation="Number of draft tokens.",
labelnames=labelnames)
self.counter_spec_decode_num_emitted_tokens = (self._counter_cls(
name="vllm:spec_decode_num_emitted_tokens_total",
documentation="Number of emitted tokens.",
labelnames=labelnames))
# --8<-- [end:metrics-definitions]
def _unregister_vllm_metrics(self) -> None:
for collector in list(prometheus_client.REGISTRY._collector_to_names):
if hasattr(collector, "_name") and "vllm" in collector._name:
prometheus_client.REGISTRY.unregister(collector)
class _RayGaugeWrapper:
"""Wraps around ray.util.metrics.Gauge to provide same API as
prometheus_client.Gauge"""
def __init__(self,
name: str,
documentation: str = "",
labelnames: Optional[List[str]] = None,
multiprocess_mode: str = ""):
del multiprocess_mode
labelnames_tuple = tuple(labelnames) if labelnames else None
self._gauge = ray_metrics.Gauge(name=name,
description=documentation,
tag_keys=labelnames_tuple)
def labels(self, **labels):
self._gauge.set_default_tags(labels)
return self
def set(self, value: Union[int, float]):
return self._gauge.set(value)
def set_to_current_time(self):
# ray metrics doesn't have set_to_current time, https://docs.ray.io/en/latest/_modules/ray/util/metrics.html
return self._gauge.set(time.time())
class _RayCounterWrapper:
"""Wraps around ray.util.metrics.Counter to provide same API as
prometheus_client.Counter"""
def __init__(self,
name: str,
documentation: str = "",
labelnames: Optional[List[str]] = None):
labelnames_tuple = tuple(labelnames) if labelnames else None
self._counter = ray_metrics.Counter(name=name,
description=documentation,
tag_keys=labelnames_tuple)
def labels(self, **labels):
self._counter.set_default_tags(labels)
return self
def inc(self, value: Union[int, float] = 1.0):
if value == 0:
return
return self._counter.inc(value)
class _RayHistogramWrapper:
"""Wraps around ray.util.metrics.Histogram to provide same API as
prometheus_client.Histogram"""
def __init__(self,
name: str,
documentation: str = "",
labelnames: Optional[List[str]] = None,
buckets: Optional[List[float]] = None):
labelnames_tuple = tuple(labelnames) if labelnames else None
boundaries = buckets if buckets else []
self._histogram = ray_metrics.Histogram(name=name,
description=documentation,
tag_keys=labelnames_tuple,
boundaries=boundaries)
def labels(self, **labels):
self._histogram.set_default_tags(labels)
return self
def observe(self, value: Union[int, float]):
return self._histogram.observe(value)
class RayMetrics(Metrics):
"""
RayMetrics is used by RayPrometheusStatLogger to log to Ray metrics.
Provides the same metrics as Metrics but uses Ray's util.metrics library.
"""
_gauge_cls: Type[prometheus_client.Gauge] = cast(
Type[prometheus_client.Gauge], _RayGaugeWrapper)
_counter_cls: Type[prometheus_client.Counter] = cast(
Type[prometheus_client.Counter], _RayCounterWrapper)
_histogram_cls: Type[prometheus_client.Histogram] = cast(
Type[prometheus_client.Histogram], _RayHistogramWrapper)
def __init__(self, labelnames: List[str], vllm_config: VllmConfig):
if ray_metrics is None:
raise ImportError("RayMetrics requires Ray to be installed.")
super().__init__(labelnames, vllm_config)
def _unregister_vllm_metrics(self) -> None:
# No-op on purpose
pass
def build_buckets(mantissa_lst: List[int], max_value: int) -> List[int]:
"""
Builds a list of buckets with increasing powers of 10 multiplied by
mantissa values until the value exceeds the specified maximum.
"""
exponent = 0
buckets: List[int] = []
while True:
for m in mantissa_lst:
value = m * 10**exponent
if value <= max_value:
buckets.append(value)
else:
return buckets
exponent += 1
def build_1_2_5_buckets(max_value: int) -> List[int]:
"""
Example:
>>> build_1_2_5_buckets(100)
[1, 2, 5, 10, 20, 50, 100]
"""
return build_buckets([1, 2, 5], max_value)
def build_1_2_3_5_8_buckets(max_value: int) -> List[int]:
"""
Example:
>>> build_1_2_3_5_8_buckets(100)
[1, 2, 3, 5, 8, 10, 20, 30, 50, 80, 100]
"""
return build_buckets([1, 2, 3, 5, 8], max_value)
def local_interval_elapsed(now: float, last_log: float,
local_interval: float) -> bool:
elapsed_time = now - last_log
return elapsed_time > local_interval
def get_throughput(tracked_stats: List[int], now: float,
last_log: float) -> float:
return float(np.sum(tracked_stats) / (now - last_log))
class LoggingStatLogger(StatLoggerBase):
"""LoggingStatLogger is used in LLMEngine to log to Stdout."""
def __init__(self, local_interval: float, vllm_config: VllmConfig) -> None:
super().__init__(local_interval, vllm_config)
self.last_prompt_throughput: Optional[float] = None
self.last_generation_throughput: Optional[float] = None
def log(self, stats: Stats) -> None:
"""Called by LLMEngine.
Logs to Stdout every self.local_interval seconds."""
# Save tracked stats for token counters.
self.num_prompt_tokens.append(stats.num_prompt_tokens_iter)
self.num_generation_tokens.append(stats.num_generation_tokens_iter)
# Update spec decode metrics
self.maybe_update_spec_decode_metrics(stats)
# Log locally every local_interval seconds.
if local_interval_elapsed(stats.now, self.last_local_log,
self.local_interval):
# Compute summary metrics for tracked stats (and log them
# to promethus if applicable).
prompt_throughput = get_throughput(self.num_prompt_tokens,
now=stats.now,
last_log=self.last_local_log)
generation_throughput = get_throughput(
self.num_generation_tokens,
now=stats.now,
last_log=self.last_local_log)
log_fn = logger.info
if not any((prompt_throughput, generation_throughput,
self.last_prompt_throughput,
self.last_generation_throughput)):
# Avoid log noise on an idle production system
log_fn = logger.debug
log_fn(
"Avg prompt throughput: %.1f tokens/s, "
"Avg generation throughput: %.1f tokens/s, "
"Running: %d reqs, Swapped: %d reqs, "
"Pending: %d reqs, GPU KV cache usage: %.1f%%, "
"CPU KV cache usage: %.1f%%.",
prompt_throughput,
generation_throughput,
stats.num_running_sys,
stats.num_swapped_sys,
stats.num_waiting_sys,
stats.gpu_cache_usage_sys * 100,
stats.cpu_cache_usage_sys * 100,
)
if (stats.cpu_prefix_cache_hit_rate >= 0
or stats.gpu_prefix_cache_hit_rate >= 0):
log_fn(
"Prefix cache hit rate: GPU: %.2f%%, CPU: %.2f%%",
stats.gpu_prefix_cache_hit_rate * 100,
stats.cpu_prefix_cache_hit_rate * 100,
)
if self.spec_decode_metrics is not None:
log_fn(
self._format_spec_decode_metrics_str(
self.spec_decode_metrics))
self._reset(stats, prompt_throughput, generation_throughput)
def _reset(self, stats, prompt_throughput, generation_throughput) -> None:
# Reset tracked stats for next interval.
self.num_prompt_tokens = []
self.num_generation_tokens = []
self.last_local_log = stats.now
self.spec_decode_metrics = None
self.last_prompt_throughput = prompt_throughput
self.last_generation_throughput = generation_throughput
def _format_spec_decode_metrics_str(
self, metrics: "SpecDecodeWorkerMetrics") -> str:
return ("Speculative metrics: "
f"Draft acceptance rate: {metrics.draft_acceptance_rate:.3f}, "
f"System efficiency: {metrics.system_efficiency:.3f}, "
f"Number of speculative tokens: {metrics.num_spec_tokens}, "
f"Number of accepted tokens: {metrics.accepted_tokens}, "
f"Number of draft tokens: {metrics.draft_tokens}, "
f"Number of emitted tokens: {metrics.emitted_tokens}.")
def info(self, type: str, obj: SupportsMetricsInfo) -> None:
raise NotImplementedError
class PrometheusStatLogger(StatLoggerBase):
"""PrometheusStatLogger is used LLMEngine to log to Promethus."""
_metrics_cls = Metrics
_gauge_cls = prometheus_client.Gauge
def __init__(self, local_interval: float, labels: Dict[str, str],
vllm_config: VllmConfig) -> None:
super().__init__(local_interval, vllm_config)
# Prometheus metrics
self.labels = labels
self.metrics = self._metrics_cls(labelnames=list(labels.keys()),
vllm_config=vllm_config)
def _log_gauge(self, gauge, data: Union[int, float]) -> None:
# Convenience function for logging to gauge.
gauge.labels(**self.labels).set(data)
def _log_counter(self, counter, data: Union[int, float]) -> None:
# Convenience function for logging to counter.
# Prevent ValueError from negative increment
if data < 0:
logger.warning("Skipping negative increment of %g to %s", data,
counter)
return
counter.labels(**self.labels).inc(data)
def _log_counter_labels(self, counter, data: CollectionsCounter,
label_key: str) -> None:
# Convenience function for collection counter of labels.
for label, count in data.items():
counter.labels(**{**self.labels, label_key: label}).inc(count)
def _log_histogram(self, histogram, data: Union[List[int],
List[float]]) -> None:
# Convenience function for logging list to histogram.
for datum in data:
histogram.labels(**self.labels).observe(datum)
def _log_gauge_string(self, gauge, data: Dict[str, str]) -> None:
gauge.labels(**data).set_to_current_time()
def _log_prometheus(self, stats: Stats) -> None:
# System state data
self._log_gauge(self.metrics.gauge_scheduler_running,
stats.num_running_sys)
self._log_gauge(self.metrics.gauge_scheduler_waiting,
stats.num_waiting_sys)
self._log_gauge(self.metrics.gauge_gpu_cache_usage,
stats.gpu_cache_usage_sys)
# Including max-lora in metric, in future this property of lora
# config maybe extended to be dynamic.
lora_info = {
self.metrics.labelname_running_lora_adapters:
",".join(stats.running_lora_adapters),
self.metrics.labelname_waiting_lora_adapters:
",".join(stats.waiting_lora_adapters),
self.metrics.labelname_max_lora:
stats.max_lora,
}
self._log_gauge_string(self.metrics.gauge_lora_info, lora_info)
# Iteration level data
self._log_counter(self.metrics.counter_num_preemption,
stats.num_preemption_iter)
self._log_counter(self.metrics.counter_prompt_tokens,
stats.num_prompt_tokens_iter)
self._log_counter(self.metrics.counter_generation_tokens,
stats.num_generation_tokens_iter)
self._log_histogram(self.metrics.histogram_iteration_tokens,
[stats.num_tokens_iter])
self._log_histogram(self.metrics.histogram_time_to_first_token,
stats.time_to_first_tokens_iter)
self._log_histogram(self.metrics.histogram_time_per_output_token,
stats.time_per_output_tokens_iter)
# Request level data
# Latency
self._log_histogram(self.metrics.histogram_e2e_time_request,
stats.time_e2e_requests)
self._log_histogram(self.metrics.histogram_queue_time_request,
stats.time_queue_requests)
self._log_histogram(self.metrics.histogram_inference_time_request,
stats.time_inference_requests)
self._log_histogram(self.metrics.histogram_prefill_time_request,
stats.time_prefill_requests)
self._log_histogram(self.metrics.histogram_decode_time_request,
stats.time_decode_requests)
# Metadata
finished_reason_counter = CollectionsCounter(
stats.finished_reason_requests)
self._log_counter_labels(self.metrics.counter_request_success,
finished_reason_counter,
Metrics.labelname_finish_reason)
self._log_histogram(self.metrics.histogram_num_prompt_tokens_request,
stats.num_prompt_tokens_requests)
self._log_histogram(
self.metrics.histogram_num_generation_tokens_request,
stats.num_generation_tokens_requests)
self._log_histogram(self.metrics.histogram_n_request, stats.n_requests)
self._log_histogram(
self.metrics.histogram_max_num_generation_tokens_request,
stats.max_num_generation_tokens_requests)
self._log_histogram(self.metrics.histogram_max_tokens_request,
stats.max_tokens_requests)
def log(self, stats: Stats):
"""Logs to prometheus and tracked stats every iteration."""
# Log to prometheus.
self._log_prometheus(stats)
# Save tracked stats for token counters.
self.num_prompt_tokens.append(stats.num_prompt_tokens_iter)
self.num_generation_tokens.append(stats.num_generation_tokens_iter)
# Update spec decode metrics
self.maybe_update_spec_decode_metrics(stats)
# Log locally every local_interval seconds.
if local_interval_elapsed(stats.now, self.last_local_log,
self.local_interval):
if self.spec_decode_metrics is not None:
self._log_gauge(
self.metrics.gauge_spec_decode_draft_acceptance_rate,
self.spec_decode_metrics.draft_acceptance_rate)
self._log_gauge(self.metrics.gauge_spec_decode_efficiency,
self.spec_decode_metrics.system_efficiency)
self._log_counter(
self.metrics.counter_spec_decode_num_accepted_tokens,
self.spec_decode_metrics.accepted_tokens)
self._log_counter(
self.metrics.counter_spec_decode_num_draft_tokens,
self.spec_decode_metrics.draft_tokens)
self._log_counter(
self.metrics.counter_spec_decode_num_emitted_tokens,
self.spec_decode_metrics.emitted_tokens)
# Reset tracked stats for next interval.
self.num_prompt_tokens = []
self.num_generation_tokens = []
self.last_local_log = stats.now
self.spec_decode_metrics = None
def info(self, type: str, obj: SupportsMetricsInfo) -> None:
# Info type metrics are syntactic sugar for a gauge permanently set to 1
# Since prometheus multiprocessing mode does not support Info, emulate
# info here with a gauge.
if type == "cache_config":
metrics_info = obj.metrics_info()
info_gauge = self._gauge_cls(
name="vllm:cache_config_info",
documentation="Information of the LLMEngine CacheConfig",
labelnames=metrics_info.keys(),
multiprocess_mode="mostrecent")
info_gauge.labels(**metrics_info).set(1)
class RayPrometheusStatLogger(PrometheusStatLogger):
"""RayPrometheusStatLogger uses Ray metrics instead."""
_metrics_cls = RayMetrics
def info(self, type: str, obj: SupportsMetricsInfo) -> None:
return None