vllm/vllm/model_executor/models/llava_next_video.py
Murali Andoorveedu 0f6d7a9a34
[Models] Add remaining model PP support (#7168)
Signed-off-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
Signed-off-by: Murali Andoorveedu <muralidhar.andoorveedu@centml.ai>
Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
2024-10-04 10:56:58 +08:00

477 lines
18 KiB
Python

import math
from functools import cached_property
from typing import (Iterable, List, Literal, Mapping, Optional, Tuple,
TypedDict, Union)
import numpy as np
import torch
import torch.nn as nn
from transformers import (CLIPVisionConfig, LlavaNextVideoConfig,
SiglipVisionConfig)
from vllm.attention import AttentionMetadata
from vllm.config import CacheConfig, MultiModalConfig
from vllm.inputs import INPUT_REGISTRY, InputContext, LLMInputs
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.clip import CLIPVisionModel
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.utils import (cached_get_tokenizer,
repeat_and_pad_placeholder_tokens)
from vllm.sequence import IntermediateTensors
from vllm.utils import is_list_of
from .clip import dummy_image_for_clip, dummy_seq_data_for_clip
from .interfaces import SupportsMultiModal, SupportsPP
from .siglip import (SiglipVisionModel, dummy_image_for_siglip,
dummy_seq_data_for_siglip)
from .utils import (group_weights_with_prefix, init_vllm_registered_model,
merge_multimodal_embeddings)
# For profile run
_MAX_FRAMES_PER_VIDEO = 32
_MAX_NUM_VIDEOS = 1
class LlavaNextVideoPixelInputs(TypedDict):
type: Literal["pixel_values_videos"]
data: Union[torch.Tensor, List[torch.Tensor]]
"""
Shape: `(batch_size, num_frames, num_channels, height, width)`
Note that `num_frames` may be different for each batch, in which case
the data is passed as a list instead of a batched tensor.
Note that it only supports one video input for one batch.
"""
def get_llava_next_video_frame_feature_size(
hf_config: LlavaNextVideoConfig) -> int:
# Support both CLIPVisionConfig and SiglipVisionConfig
image_size = hf_config.vision_config.image_size
patch_size = hf_config.vision_config.patch_size
spatial_pool_stride = hf_config.spatial_pool_stride
return int((image_size / patch_size / spatial_pool_stride)**2)
def _get_max_llm_tokens(ctx: InputContext) -> int:
"""
Calculated from the maximum video frames under the context length
constraints of the language model.
"""
hf_text_config = ctx.model_config.hf_text_config
model_config = ctx.model_config
max_tokens = model_config.max_model_len
rope_scaling = model_config.rope_scaling
if rope_scaling:
rope_scaling_factor = hf_text_config.rope_scaling["factor"]
else:
rope_scaling_factor = 1
max_tokens *= rope_scaling_factor
return max_tokens
def get_max_llava_next_video_tokens(ctx: InputContext) -> int:
# Currently set to 32 frames
# TODO: max_tokens = _get_max_llm_tokens(ctx)
hf_config = ctx.get_hf_config(LlavaNextVideoConfig)
tokens_per_frame = get_llava_next_video_frame_feature_size(hf_config)
return _MAX_FRAMES_PER_VIDEO * tokens_per_frame
def dummy_data_for_llava_next_video(ctx: InputContext, seq_len: int,
mm_counts: Mapping[str, int]):
hf_config = ctx.get_hf_config(LlavaNextVideoConfig)
vision_config = hf_config.vision_config
# TODO: support multiple videos
num_videos = mm_counts["video"]
if num_videos != _MAX_NUM_VIDEOS:
raise NotImplementedError(
f"Only {_MAX_NUM_VIDEOS} videos are supported")
# TODO: support configuring the number of frames
frames_per_video = _MAX_FRAMES_PER_VIDEO
# num_images = num_videos * frames_per_video
# fills the sequence with as longer video data as possible
tokens_per_frame = get_llava_next_video_frame_feature_size(hf_config)
video_feature_size = frames_per_video * tokens_per_frame
if isinstance(vision_config, CLIPVisionConfig):
seq_data = dummy_seq_data_for_clip(
vision_config,
seq_len,
num_videos,
image_token_id=hf_config.video_token_index,
image_feature_size_override=video_feature_size,
)
pil_frame = dummy_image_for_clip(vision_config, num_images=1)
np_frame = np.array(pil_frame["image"])
mm_data_per_video = np.repeat([np_frame], frames_per_video, axis=0)
mm_data = {"video": mm_data_per_video}
return seq_data, mm_data
elif isinstance(vision_config, SiglipVisionConfig):
seq_data = dummy_seq_data_for_siglip(
vision_config,
seq_len,
num_videos,
image_token_id=hf_config.video_token_index,
image_feature_size_override=video_feature_size,
)
pil_frame = dummy_image_for_siglip(vision_config, num_images=1)
np_frame = np.array(pil_frame["image"])
mm_data_per_video = np.repeat([np_frame], frames_per_video, axis=0)
mm_data = {"video": mm_data_per_video}
return seq_data, mm_data
msg = f"Unsupported vision config: {type(vision_config)}"
raise NotImplementedError(msg)
def input_processor_for_llava_next_video(ctx: InputContext,
llm_inputs: LLMInputs):
multi_modal_data = llm_inputs.get("multi_modal_data")
if multi_modal_data is None or "video" not in multi_modal_data:
return llm_inputs
video_data = multi_modal_data["video"]
model_config = ctx.model_config
hf_config = ctx.get_hf_config(LlavaNextVideoConfig)
vision_config = hf_config.vision_config
if isinstance(video_data, np.ndarray):
# Supports both CLIP and Siglip
num_frames = video_data.shape[0]
frame_feature_size = \
get_llava_next_video_frame_feature_size(hf_config)
video_feature_size = num_frames * frame_feature_size
tokenizer = cached_get_tokenizer(model_config.tokenizer)
new_prompt, new_token_ids = repeat_and_pad_placeholder_tokens(
tokenizer,
llm_inputs.get("prompt"),
llm_inputs["prompt_token_ids"],
placeholder_token_id=hf_config.video_token_index,
repeat_count=video_feature_size,
)
return LLMInputs(prompt_token_ids=new_token_ids,
prompt=new_prompt,
multi_modal_data=multi_modal_data)
elif is_list_of(video_data, np.ndarray):
raise NotImplementedError(
"Processing multiple videos is not supported")
msg = f"Unsupported vision config: {type(vision_config)}"
raise NotImplementedError(msg)
def _init_vision_tower(hf_config: LlavaNextVideoConfig):
vision_config = hf_config.vision_config
# Initialize the vision tower only up to the required feature layer
vision_feature_layer = hf_config.vision_feature_layer
if vision_feature_layer < 0:
num_hidden_layers = hf_config.vision_config.num_hidden_layers \
+ vision_feature_layer + 1
else:
num_hidden_layers = vision_feature_layer + 1
if isinstance(vision_config, CLIPVisionConfig):
return CLIPVisionModel(
vision_config,
num_hidden_layers_override=num_hidden_layers,
)
elif isinstance(vision_config, SiglipVisionConfig):
return SiglipVisionModel(
vision_config,
num_hidden_layers_override=num_hidden_layers,
)
msg = f"Unsupported vision config: {type(vision_config)}"
raise NotImplementedError(msg)
# adopted from transformers modeling_llava_next_video.py
class LlavaNextVideoPooler(nn.Module):
def __init__(self, config):
super().__init__()
mode = config.spatial_pool_mode
stride = config.spatial_pool_stride
image_size = config.vision_config.image_size
patch_size = config.vision_config.patch_size
self.image_size = image_size // patch_size**2
if mode == "average":
self.pool = nn.AvgPool2d(kernel_size=stride, stride=stride)
elif mode == "max":
self.pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
else:
# TODO: Support Conv2d pooling layer, need to load weights
raise ValueError(
f"Unknown pooling mode: {mode}. Expected [`average`, `max`]")
def forward(self, image_features):
ori_width = int(
math.sqrt(image_features.shape[1] * self.image_size //
self.image_size))
ori_height = int(ori_width * self.image_size // self.image_size)
batch_size, _, dim = image_features.shape
image_features_spatial = image_features \
.view(batch_size, ori_height, ori_height, dim) \
.permute(0, 3, 1, 2)
image_features_spatial = self.pool(image_features_spatial)
return image_features_spatial.flatten(2).transpose(1, 2).contiguous()
class LlavaNextMultiModalProjector(nn.Module):
def __init__(self, vision_hidden_size: int, text_hidden_size: int,
projector_hidden_act: str):
super().__init__()
self.linear_1 = nn.Linear(vision_hidden_size,
text_hidden_size,
bias=True)
self.act = get_act_fn(projector_hidden_act)
self.linear_2 = nn.Linear(text_hidden_size,
text_hidden_size,
bias=True)
def forward(self, image_features: torch.Tensor) -> torch.Tensor:
hidden_states = self.linear_1(image_features)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
@MULTIMODAL_REGISTRY.register_input_mapper("video")
@MULTIMODAL_REGISTRY.register_max_multimodal_tokens(
"video", get_max_llava_next_video_tokens)
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_llava_next_video)
@INPUT_REGISTRY.register_input_processor(input_processor_for_llava_next_video)
class LlavaNextVideoForConditionalGeneration(nn.Module, SupportsMultiModal,
SupportsPP):
def __init__(self,
config: LlavaNextVideoConfig,
multimodal_config: MultiModalConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None) -> None:
super().__init__()
self.config = config
self.multimodal_config = multimodal_config
# Initialize the vision tower only up to the required feature layer
self.vision_tower = _init_vision_tower(config)
self.vision_resampler = LlavaNextVideoPooler(config)
self.multi_modal_projector = LlavaNextMultiModalProjector(
vision_hidden_size=config.vision_config.hidden_size,
text_hidden_size=config.text_config.hidden_size,
projector_hidden_act=config.projector_hidden_act)
self.language_model = init_vllm_registered_model(
config.text_config, cache_config, quant_config)
self.make_empty_intermediate_tensors = (
self.language_model.model.make_empty_intermediate_tensors)
@cached_property
def sampler(self):
if hasattr(self.language_model, "sampler"):
return self.language_model.sampler
return Sampler()
def _validate_video_pixel_values(
self, data: Union[torch.Tensor, List[torch.Tensor]]
) -> Union[torch.Tensor, List[torch.Tensor]]:
h = w = self.config.vision_config.image_size
expected_dims = (3, h, w)
def _validate_shape(d: torch.Tensor):
actual_dims = tuple(d.shape[2:])
if actual_dims != expected_dims:
expected_expr = ("num_frames", *map(str, expected_dims))
raise ValueError(
"The expected shape of pixel values in each video frame "
f"is {expected_expr}. You supplied {tuple(d.shape)}.")
for d in data:
_validate_shape(d)
return data
def _parse_and_validate_video_input(
self, **kwargs: object) -> Optional[LlavaNextVideoPixelInputs]:
"""
A legal video input should have the following dimensions:
{
"pixel_values_videos" :
List[b, Tensor(nb_frames, nb_channels, height, width)]
}
"""
pixel_values = kwargs.pop("pixel_values_videos", None)
if pixel_values is None:
return None
if not (is_list_of(pixel_values,
(torch.Tensor)) # different shape videos
or isinstance(pixel_values,
torch.Tensor)): # same shape videos
raise ValueError("Incorrect type of pixel values. "
f"Got type: {type(pixel_values)}")
return LlavaNextVideoPixelInputs(
type="pixel_values_videos",
data=pixel_values,
)
def _select_image_features(self, image_features: torch.Tensor, *,
strategy: str) -> torch.Tensor:
if strategy == "default":
return image_features[:, 1:]
elif strategy == "full":
return image_features
raise ValueError(f"Unexpected select feature strategy: {strategy}")
def _video_pixels_to_features(
self,
vision_tower: Union[CLIPVisionModel, SiglipVisionModel],
pixel_values: torch.Tensor,
) -> torch.Tensor:
# NOTE: we skip the step to select the vision feature layer since
# this is already done inside the vision tower
image_features = vision_tower(pixel_values)
image_features = self._select_image_features(
image_features,
strategy=self.config.vision_feature_select_strategy,
)
image_features = self.vision_resampler(image_features)
image_features = self.multi_modal_projector(image_features)
return image_features
def _process_video_pixels(self, inputs: LlavaNextVideoPixelInputs):
assert self.vision_tower is not None
video_pixels = inputs["data"]
if isinstance(video_pixels, torch.Tensor):
# TODO: support multiple videos per input
b, num_videos, num_frames, c, h, w = video_pixels.shape
assert (num_videos == 1)
stacked_pixels = video_pixels.view(b * num_videos * num_frames, c,
h, w)
stacked_embeddings = self._video_pixels_to_features(
self.vision_tower, stacked_pixels)
return stacked_embeddings.view(b, num_frames,
*stacked_embeddings.shape[1:])
elif is_list_of(video_pixels, torch.Tensor):
frames_per_videos = [v.shape[0] for v in video_pixels]
stacked_pixels = torch.cat(video_pixels, dim=0)
stacked_embeddings = self._video_pixels_to_features(
self.vision_tower, stacked_pixels)
return torch.split(stacked_embeddings, frames_per_videos, dim=0)
else:
raise ValueError(
f"Unsupported type of video input {type(video_pixels)}")
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
**kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
"""Run forward pass for LlaVA-NeXT-Video.
Args:
input_ids: Flattened (concatenated) input_ids corresponding to a
batch.
pixel_values_videos: Pixels in each frames for each input videos.
"""
if intermediate_tensors is not None:
input_ids = None
inputs_embeds = None
else:
video_input = self._parse_and_validate_video_input(**kwargs)
if video_input is not None:
video_embeddings = self._process_video_pixels(video_input)
inputs_embeds = self.language_model \
.model.get_input_embeddings(input_ids)
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, video_embeddings,
self.config.video_token_index)
input_ids = None
else:
inputs_embeds = None
hidden_states = self.language_model.model(input_ids,
positions,
kv_caches,
attn_metadata,
intermediate_tensors,
inputs_embeds=inputs_embeds)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
return self.language_model.compute_logits(hidden_states,
sampling_metadata)
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
return self.language_model.sample(logits, sampling_metadata)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
# prepare weight iterators for components
weights_group = group_weights_with_prefix(weights)
# load vision encoder
self.vision_tower.load_weights(weights_group["vision_tower"])
# load mlp projector
mlp_params_dict = dict(self.multi_modal_projector.named_parameters())
for name, loaded_weight in weights_group["multi_modal_projector"]:
param = mlp_params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
# load llm backbone
self.language_model.load_weights(weights_group["language_model"])