mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-10 03:38:43 +08:00
297 lines
9.7 KiB
Python
297 lines
9.7 KiB
Python
# Adapted from
|
|
# https://github.com/THUDM/GLM-4
|
|
"""Inference-only GLM-4v model visual encoder compatible with THUDM weights."""
|
|
from argparse import Namespace
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import LayerNorm
|
|
|
|
from vllm.attention.layer import MultiHeadAttention
|
|
from vllm.distributed import get_tensor_model_parallel_world_size
|
|
from vllm.model_executor.layers.activation import SiluAndMul, get_act_fn
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.quantization.base_config import (
|
|
QuantizationConfig)
|
|
|
|
|
|
class PatchEmbedding(nn.Module):
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.proj = nn.Conv2d(config.in_channels,
|
|
config.hidden_size,
|
|
kernel_size=config.patch_size,
|
|
stride=config.patch_size)
|
|
self.cls_embedding = nn.Parameter(torch.zeros(1, config.hidden_size))
|
|
self.position_embedding = nn.Embedding(config.num_positions,
|
|
config.hidden_size)
|
|
|
|
def forward(self, images: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Parameters:
|
|
images : torch.Tensor
|
|
Input image tensor with shape (B, C, H, W)
|
|
|
|
Returns:
|
|
torch.Tensor
|
|
Transformed tensor with shape (B, L, D)
|
|
"""
|
|
images = images.to(self.proj.weight.device)
|
|
x = self.proj(images)
|
|
x = x.flatten(2).transpose(1, 2)
|
|
cls_token = self.cls_embedding.expand(x.shape[0], -1, -1)
|
|
x = torch.cat((cls_token, x), dim=1)
|
|
x += self.position_embedding.weight.unsqueeze(0)
|
|
return x
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = '',
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.num_heads_per_rank = config.num_heads // self.tp_size
|
|
self.head_dim = config.hidden_size // config.num_heads
|
|
self.scale = self.head_dim**-0.5
|
|
|
|
self.query_key_value = QKVParallelLinear(
|
|
config.hidden_size,
|
|
self.head_dim,
|
|
config.num_heads,
|
|
quant_config=quant_config,
|
|
)
|
|
self.dense = RowParallelLinear(
|
|
config.hidden_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
)
|
|
|
|
self.attn = MultiHeadAttention(self.num_heads_per_rank, self.head_dim,
|
|
self.scale)
|
|
self.output_dropout = torch.nn.Dropout(config.dropout_prob)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
qkv, _ = self.query_key_value(x) # B, L, 3 * H * D
|
|
q, k, v = qkv.chunk(3, dim=-1)
|
|
|
|
out = self.attn(q, k, v)
|
|
output, _ = self.dense(out)
|
|
output = self.output_dropout(output)
|
|
return output
|
|
|
|
|
|
class MLP(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.activation_fn = get_act_fn(config.hidden_act)
|
|
self.fc1 = ColumnParallelLinear(
|
|
config.hidden_size,
|
|
config.intermediate_size,
|
|
quant_config=quant_config,
|
|
)
|
|
self.fc2 = RowParallelLinear(
|
|
config.intermediate_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x, _ = self.fc1(x)
|
|
x = self.activation_fn(x)
|
|
x, _ = self.fc2(x)
|
|
return x
|
|
|
|
|
|
class TransformerLayer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = '',
|
|
):
|
|
super().__init__()
|
|
self.input_layernorm = LayerNorm(config.hidden_size,
|
|
eps=config.layer_norm_eps)
|
|
self.attention = Attention(config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attention")
|
|
self.mlp = MLP(config, quant_config=quant_config)
|
|
self.post_attention_layernorm = LayerNorm(config.hidden_size,
|
|
eps=config.layer_norm_eps)
|
|
|
|
def forward(self, hidden_states):
|
|
attention_input = hidden_states
|
|
attention_output = self.input_layernorm(
|
|
self.attention(attention_input))
|
|
hidden_states = attention_input + attention_output
|
|
mlp_input = hidden_states
|
|
mlp_output = self.post_attention_layernorm(self.mlp(mlp_input))
|
|
output = mlp_input + mlp_output
|
|
return output
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = '',
|
|
):
|
|
super().__init__()
|
|
self.layers = nn.ModuleList([
|
|
TransformerLayer(config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.layer.{layer_idx}")
|
|
for layer_idx in range(config.num_hidden_layers)
|
|
])
|
|
|
|
def forward(self, hidden_states):
|
|
for layer_module in self.layers:
|
|
hidden_states = layer_module(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class GLU(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config,
|
|
in_features,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
"""
|
|
The original implementation is the same as:
|
|
```python
|
|
self.dense_h_to_4h = ColumnParallelLinear(
|
|
config.hidden_size,
|
|
config.ffn_hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config
|
|
)
|
|
|
|
self.gate_proj = ColumnParallelLinear(
|
|
config.hidden_size,
|
|
config.ffn_hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config
|
|
)
|
|
```
|
|
```
|
|
gate_proj_output, _ = self.gate_proj(x)
|
|
dense_h_to_4h_output, _ = self.dense_h_to_4h(x)
|
|
x = torch.cat([gate_proj_output, dense_h_to_4h_output], dim=-1)
|
|
```
|
|
|
|
We merge two ColumnParallelLinear into one MergedColumnParallelLinear:
|
|
```
|
|
self.merged_proj = MergedColumnParallelLinear(
|
|
config.hidden_size,
|
|
[config.ffn_hidden_size] * 2,
|
|
bias=False,
|
|
quant_config=quant_config
|
|
)
|
|
```
|
|
```
|
|
x, _ = self.merged_proj(x)
|
|
```
|
|
"""
|
|
super().__init__()
|
|
self.linear_proj = ReplicatedLinear(in_features,
|
|
config.hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config)
|
|
self.norm1 = nn.LayerNorm(config.hidden_size)
|
|
self.act1 = nn.GELU()
|
|
self.act2 = SiluAndMul()
|
|
|
|
self.merged_proj = MergedColumnParallelLinear(
|
|
config.hidden_size, [config.ffn_hidden_size] * 2,
|
|
bias=False,
|
|
quant_config=quant_config)
|
|
|
|
self.dense_4h_to_h = RowParallelLinear(config.ffn_hidden_size,
|
|
config.hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config)
|
|
|
|
def forward(self, x):
|
|
x, _ = self.linear_proj(x)
|
|
x = self.act1(self.norm1(x))
|
|
x, _ = self.merged_proj(x)
|
|
x = self.act2(x)
|
|
x, _ = self.dense_4h_to_h(x)
|
|
return x
|
|
|
|
|
|
class EVA2CLIPModel(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = '',
|
|
):
|
|
super().__init__()
|
|
vision_config = Namespace(**config.vision_config)
|
|
self.patch_embedding = PatchEmbedding(vision_config)
|
|
self.transformer = Transformer(vision_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.transformer")
|
|
self.linear_proj = GLU(config,
|
|
in_features=config.hidden_size,
|
|
quant_config=quant_config)
|
|
self.conv = nn.Conv2d(in_channels=vision_config.hidden_size,
|
|
out_channels=config.hidden_size,
|
|
kernel_size=2,
|
|
stride=2)
|
|
self.boi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
|
self.eoi = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
|
self.scaling_factor = vision_config.scaling_factor
|
|
|
|
def forward(self, images: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Parameters:
|
|
images : torch.Tensor
|
|
Input image tensor with shape (B, C, H, W)
|
|
|
|
Returns:
|
|
torch.Tensor
|
|
Transformed tensor with shape (B, L, D)
|
|
"""
|
|
x = self.patch_embedding(images)
|
|
x = self.transformer(x)
|
|
x = x[:, 1:]
|
|
|
|
b, s, h = x.shape
|
|
grid_size = int(s**0.5)
|
|
x = x.view(b, grid_size, grid_size, h).permute(0, 3, 1, 2)
|
|
x = self.conv(x)
|
|
|
|
x = x.flatten(2).transpose(1, 2)
|
|
x = self.linear_proj(x)
|
|
boi = self.boi.expand(x.shape[0], -1, -1)
|
|
eoi = self.eoi.expand(x.shape[0], -1, -1)
|
|
x = torch.cat((boi, x, eoi), dim=1)
|
|
x = x / self.scaling_factor
|
|
return x
|