vllm/vllm/distributed/eplb/eplb_state.py
Mercykid-bash 1119f6e47a
Abstract eplb algo (#26471)
Signed-off-by: Che Ruan <cr623@ic.ac.uk>
Signed-off-by: mengxingkongzhouhan <117415539+mengxingkongzhouhan@users.noreply.github.com>
Signed-off-by: Mercykid-bash <ruanche0218@gmail.com>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Che Ruan <cr623@ic.ac.uk>
Co-authored-by: mengxingkongzhouhan <117415539+mengxingkongzhouhan@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-12-04 19:09:09 +00:00

1165 lines
45 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Expert parallelism load balancer (EPLB) metrics and states.
# Glossary
- **Logical Expert**: An expert that is part of the model's logical structure.
It holds a set of weights and is replicated across multiple physical
experts.
- **Redundant Expert**: To achieve load balancing, for some popular logical
experts, we create additional copies of the expert weights. During inference,
each of these copies can be routed to by the same set of tokens.
- **Physical Expert**: An expert that is instantiated on a specific device.
It is a replica of a logical expert and can be rearranged across devices.
I.e., one logical expert may have multiple sets of weights initialized on
different devices, and each of these sets is a physical expert.
- **Local Physical Expert**: A physical expert that is instantiated on the
current device.
For example: DeepSeek-R1 has 256 logical experts, so each MoE layer
has 256 sets of linear layer weights in the model parameters. If we add 32
redundant experts, DeepSeek-R1 will have 256 + 32 = 288 physical experts in
total. And when deploying, we'll have 288 sets of linear layer weights for each
MoE layer. If we have 32 EP ranks, then each GPU will hold 288 / 32 = 9 local
physical experts.
"""
import threading
import time
from collections.abc import Sequence
from dataclasses import dataclass
import torch
from torch.distributed import ProcessGroup, all_reduce
from vllm.config import ModelConfig, ParallelConfig
from vllm.distributed.parallel_state import (
get_ep_group,
get_node_count,
in_the_same_node_as,
)
from vllm.distributed.utils import StatelessProcessGroup
from vllm.logger import init_logger
from vllm.model_executor.models.interfaces import MixtureOfExperts
from .async_worker import start_async_worker
from .policy import EPLB_POLICIES, AbstractEplbPolicy, DefaultEplbPolicy
from .rebalance_execute import move_from_buffer, rearrange_expert_weights_inplace
logger = init_logger(__name__)
@dataclass
class EplbModelState:
"""EPLB metrics."""
physical_to_logical_map: torch.Tensor
"""
Mapping from physical experts to logical experts.
Shape: (num_moe_layers, num_physical_experts)
# Example
For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3
EP ranks, the mapping could look like this:
```
[[0, 1, 2, 3, 0, 1],
[0, 2, 0, 1, 0, 3]]
```
"""
logical_to_physical_map: torch.Tensor
"""
Mapping from logical experts to physical experts.
This is a sparse matrix, where -1 indicates no mapping.
Shape: (num_moe_layers, num_logical_experts, num_redundant_experts + 1)
# Example
For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3
EP ranks, the mapping could look like this:
```
[[[0, 4, -1],
[1, 5, -1],
[2, -1, -1],
[3, -1, -1]],
[[0, 2, 4],
[3, -1, -1],
[1, -1, -1],
[5, -1, -1]]]
```
"""
logical_replica_count: torch.Tensor
"""
Number of replicas for each logical expert.
This is exactly the non-`-1` count in the `logical_to_physical_map`.
Shape: (num_moe_layers, num_logical_experts)
# Example
For a 2-layer MoE model with 6 physical experts and 4 logical experts on 3
EP ranks, the count could look like this:
```
[[2, 2, 1, 1],
[3, 1, 1, 1]]
"""
expert_load_pass: torch.Tensor
"""
Expert load during this forward pass.
We use the token count each expert processes as the load.
Shape: (num_moe_layers, num_physical_experts)
"""
expert_load_window: torch.Tensor
"""
A sliding window of expert load.
Shape: (window_size, num_moe_layers, num_physical_experts)
NOTE: The expert_load_view now records load for all physical experts
rather than just local experts. This ensures consistent load statistics
across different dispatch methods (naive all-to-all, DeepEP, pplx-kernels).
The recorded load will be multiplied by dp_size when using naive all-to-all
due to each DP rank contributing the same token set to the calculation.
See:
https://github.com/vllm-project/vllm/pull/22167#pullrequestreview-3086143856
"""
model_name: str
model: MixtureOfExperts
expert_buffer: list[torch.Tensor]
"""
The buffer to store the expert weights during transfer.
"""
buffer_lock: threading.Lock
"""
The lock to protect the expert buffer.
"""
buffer_ready_event: torch.cuda.Event | None
"""
CUDA event recorded when the async worker finishes filling the buffer.
The main thread waits on this before consuming the buffer.
"""
ep_buffer_ready: int
"""
The flag indicates whether the expert buffer is ready for transfer.
0 or 1.
"""
layer_to_transfer: int
"""
The layer index to transfer in async mode.
"""
rebalanced: bool
"""
The flag indicates whether the experts rebalance have been computed.
"""
pending_global_ready_check: bool
"""
Whether the async EPLB needs to poll peers for buffer readiness.
"""
is_unchanged: list[bool]
"""
intermediate variable between `move_to_buffer` and `move_to_workspace`.
The size is same as the num of physical experts in the current layer.
"""
is_received_locally: list[bool]
"""
intermediate variable between `move_to_buffer` and `move_to_workspace`.
The size is same as the num of physical experts in the current layer.
"""
experts_recv_loc: dict[int, int]
"""
intermediate variable between `move_to_buffer` and `move_to_workspace`.
The size is same as the num of physical experts in the current layer.
"""
is_async_enabled: bool
"""
The flag indicates whether the EPLB is running in async mode.
"""
cuda_device_index: int | None
"""
CUDA device index for the async EPLB worker thread.
"""
new_physical_to_logical_map: torch.Tensor | None = None
"""
intermediate variable between `move_to_buffer` and `move_to_workspace`.
the size is same as physical_to_logical_map
"""
new_logical_to_physical_map: torch.Tensor | None = None
"""
intermediate variable between `move_to_buffer` and `move_to_workspace`.
the size is same as logical_to_physical_map
"""
new_logical_replica_count: torch.Tensor | None = None
"""
intermediate variable between `move_to_buffer` and `move_to_workspace`.
the size is same as logical_replica_count
"""
class EplbState:
"""
EplbState of each expert parallel model. Key is the model config hash.
"""
def __init__(self, parallel_config: ParallelConfig, device: torch.device):
self.parallel_config = parallel_config
self.device = device
self.model_states: dict[str, EplbModelState] = {}
self.policy: type[AbstractEplbPolicy] = DefaultEplbPolicy
"""
Selected EPLB algorithm class
"""
self.expert_load_window_step: int = 0
"""
Current step in the sliding window.
Different from `expert_rearrangement_step`,
each EP rank may have its own `expert_load_window_step`.
"""
self.expert_load_window_size: int = 0
"""
Size of the expert load sliding window.
This is a constant and is taken from the config.
"""
self.expert_rearrangement_step: int = 0
"""
Steps after last rearrangement.
Will trigger a rearrangement if it exceeds the threshold.
NOTE: Keep in mind that all EP ranks need to have the same
`expert_rearrangement_step` value to ensure synchronization.
Otherwise, the rearrangement will hang at collective
communication calls.
"""
self.expert_rearrangement_step_interval: int = 0
"""
Interval for expert rearrangement steps.
This is a constant and is taken from the config.
"""
self.is_async: bool = False
"""
The flag indicates whether the EPLB is running in async mode.
"""
self.rearrange_event = threading.Event()
"""
Event to signal when a new rearrangement is needed for the async thread.
"""
self.async_worker: threading.Thread | None = None
"""
Background thread handling async transfers.
"""
self.cuda_device_index: int | None = None
"""
CUDA device index for the async EPLB worker thread.
"""
if self.device.type == "cuda":
self.cuda_device_index = self.device.index
if self.cuda_device_index is None and torch.cuda.is_available():
self.cuda_device_index = torch.cuda.current_device()
@staticmethod
def build_initial_global_physical_to_logical_map(
num_routed_experts: int,
num_redundant_experts: int,
) -> Sequence[int]:
"""
Build an initial expert arrangement using the following structure:
[original routed experts, redundant experts]
Returns:
physical_to_logical_map (Sequence[int]): A list of integers,
where each integer is the index of the logical expert
that the corresponding physical expert maps to.
"""
global_physical_to_logical_map = list(range(num_routed_experts))
global_physical_to_logical_map += [
i % num_routed_experts for i in range(num_redundant_experts)
]
return global_physical_to_logical_map
def validate_ep_configuration(self, new_model: MixtureOfExperts):
"""
Validate that the expert parallel configuration of
the new model is the same as the existing models.
"""
if len(self.model_states) > 0:
model = next(iter(self.model_states.values())).model
if (
model.num_routed_experts != new_model.num_routed_experts
or model.num_redundant_experts != new_model.num_redundant_experts
or model.num_physical_experts != new_model.num_physical_experts
or model.num_logical_experts != new_model.num_logical_experts
or model.num_expert_groups != new_model.num_expert_groups
):
raise RuntimeError(
"Model: {} "
"with config {} "
"{} {} {} {} "
"mismatch with new model {} "
"with config {} "
"{} {} {} {}".format(
type(model),
model.num_routed_experts,
model.num_redundant_experts,
model.num_physical_experts,
model.num_logical_experts,
model.num_expert_groups,
type(new_model),
new_model.num_routed_experts,
new_model.num_redundant_experts,
new_model.num_physical_experts,
new_model.num_logical_experts,
new_model.num_expert_groups,
)
)
def add_model(
self,
model: MixtureOfExperts,
model_config: ModelConfig,
global_expert_load: torch.Tensor | None = None,
old_global_expert_indices: torch.Tensor | None = None,
rank_mapping: dict[int, int] | None = None,
):
"""
Build the initial EPLB state.
"""
self.validate_ep_configuration(model)
self.is_async = self.parallel_config.eplb_config.use_async
physical_to_logical_map_list = (
EplbState.build_initial_global_physical_to_logical_map(
model.num_routed_experts,
model.num_redundant_experts,
)
)
physical_to_logical_map = torch.tensor(
physical_to_logical_map_list,
device=self.device,
)
# Assuming 8 GPUs per node, this supports up to
# (1023 + 1) / 8 = 128 nodes for now.
# TODO(rui): make this configurable
MAX_EXPERT_REDUNDANCY = 1023
assert model.num_redundant_experts <= MAX_EXPERT_REDUNDANCY, (
f"num_redundant_experts {model.num_redundant_experts} "
f"must be less than or equal to {MAX_EXPERT_REDUNDANCY}"
)
max_slots_per_logical_expert = MAX_EXPERT_REDUNDANCY + 1
logical_to_physical_map = torch.full(
(model.num_logical_experts, max_slots_per_logical_expert),
-1,
device=self.device,
)
logical_replica_count = torch.zeros(
(model.num_logical_experts,),
device=self.device,
dtype=torch.long,
)
for i in range(model.num_physical_experts):
logical_idx = physical_to_logical_map[i]
logical_to_physical_map[logical_idx, logical_replica_count[logical_idx]] = i
logical_replica_count[logical_idx] += 1
# Duplicate initial mapping for all layers
physical_to_logical_map = (
physical_to_logical_map.unsqueeze(0)
.expand(
model.num_moe_layers,
-1,
)
.contiguous()
)
logical_to_physical_map = (
logical_to_physical_map.unsqueeze(0)
.expand(
model.num_moe_layers,
-1,
-1,
)
.contiguous()
)
logical_replica_count = (
logical_replica_count.unsqueeze(0)
.expand(
model.num_moe_layers,
-1,
)
.contiguous()
)
expert_load_pass = torch.zeros(
(model.num_moe_layers, model.num_physical_experts),
dtype=torch.int32,
device=self.device,
)
self.expert_load_window_size = self.parallel_config.eplb_config.window_size
expert_load_window = torch.zeros(
(
self.expert_load_window_size,
model.num_moe_layers,
model.num_physical_experts,
),
dtype=torch.int32,
device=self.device,
)
# Set the initial progress of rearrangement to 3/4
eplb_step_interval = self.parallel_config.eplb_config.step_interval
self.expert_rearrangement_step = max(
0, eplb_step_interval - eplb_step_interval // 4
)
self.expert_rearrangement_step_interval = eplb_step_interval
# Set the policy based on the selected eplb algorithm type.
policy_type = self.parallel_config.eplb_config.policy
self.policy = EPLB_POLICIES[policy_type]
logger.debug("Selected EPLB policy: %d", policy_type)
if global_expert_load is not None:
ep_group = get_ep_group().device_group
assert global_expert_load.shape == (
model.num_moe_layers,
model.num_logical_experts,
)
assert global_expert_load.dtype == torch.int64
num_replicas = model.num_physical_experts
num_groups = model.num_expert_groups
num_nodes = get_node_count()
num_gpus = ep_group.size()
if num_gpus % num_nodes != 0:
num_nodes = 1
logger.warning_once(
f"num_gpus % num_nodes != 0, "
"not using hierarchical rearrangement algorithm.\n"
f"{num_gpus=}, {num_nodes=}"
)
# Get new expert mappings
(
new_physical_to_logical_map,
new_logical_to_physical_map,
new_logical_replica_count,
) = self.policy.rebalance_experts(
global_expert_load,
num_replicas,
num_groups,
num_nodes,
num_gpus,
)
max_physical_slots = new_logical_to_physical_map.shape[-1]
assert max_physical_slots <= logical_to_physical_map.shape[-1]
new_logical_to_physical_map = torch.nn.functional.pad(
new_logical_to_physical_map,
(0, logical_to_physical_map.shape[-1] - max_physical_slots),
value=-1,
)
physical_to_logical_map = new_physical_to_logical_map.to(self.device)
logical_to_physical_map.copy_(new_logical_to_physical_map)
logical_replica_count.copy_(new_logical_replica_count)
else:
new_physical_to_logical_map = None
new_logical_to_physical_map = None
new_logical_replica_count = None
model.set_eplb_state(
expert_load_pass,
logical_to_physical_map,
logical_replica_count,
)
if global_expert_load is not None:
rearrange_expert_weights_inplace(
old_global_expert_indices,
new_physical_to_logical_map,
model.expert_weights,
ep_group,
False,
rank_mapping,
)
self.expert_rearrangement_step = 0
expert_buffer = [torch.empty_like(w) for w in model.expert_weights[0]]
model_state = EplbModelState(
physical_to_logical_map=physical_to_logical_map,
logical_to_physical_map=logical_to_physical_map,
logical_replica_count=logical_replica_count,
expert_load_pass=expert_load_pass,
expert_load_window=expert_load_window,
model_name=model_config.model,
model=model,
expert_buffer=expert_buffer,
buffer_lock=threading.Lock(),
buffer_ready_event=None,
ep_buffer_ready=0,
layer_to_transfer=0,
rebalanced=False,
pending_global_ready_check=False,
is_unchanged=[],
is_received_locally=[],
experts_recv_loc={},
is_async_enabled=self.is_async,
cuda_device_index=self.cuda_device_index,
new_physical_to_logical_map=new_physical_to_logical_map,
new_logical_to_physical_map=new_logical_to_physical_map,
new_logical_replica_count=new_logical_replica_count,
)
self.model_states[model_config.compute_hash()] = model_state
def step(
self,
is_dummy: bool = False,
is_profile: bool = False,
log_stats: bool = False,
) -> None:
"""
Step the EPLB state.
Args:
is_dummy (bool): If `True`, this is a dummy step and the load
metrics recorded in this forward pass will not count.
Defaults to `False`.
is_profile (bool): If `True`, perform a dummy rearrangement
with maximum communication cost. This is used in
`profile_run` to reserve enough memory
for the communication buffer.
log_stats (bool): If `True`, log the expert load metrics.
# Stats
The metrics are all summed up across layers.
- `avg_tokens`: The average load across ranks.
- `max_tokens`: The maximum load across ranks.
- `balancedness`: The ratio of average load to maximum load.
"""
ep_group = get_ep_group().device_group
if is_profile:
self.rearrange(is_profile=True)
return
if is_dummy:
# Do not record load metrics for dummy steps
for eplb_model_state in self.model_states.values():
eplb_model_state.expert_load_pass.zero_()
if log_stats:
# Sync the expert load pass for each model (main and drafter).
# expert_load_pass: (num_moe_layers, num_physical_experts)
expert_load_pass_list = self._sync_load_pass()
ep_group = get_ep_group().device_group
for expert_load_pass, eplb_model_state in zip(
expert_load_pass_list, self.model_states.values()
):
# num_tokens_per_rank: (num_moe_layers, num_ranks)
num_tokens_per_rank = (
expert_load_pass.reshape(
expert_load_pass.shape[0], ep_group.size(), -1
)
.sum(dim=-1)
.float()
)
# Compute balancedness ratio:
# for each layer:
# (mean load across ranks) / (max load across ranks)
avg_tokens_tensor = num_tokens_per_rank.mean(dim=0).sum(dim=0)
max_tokens_tensor = num_tokens_per_rank.max(dim=0).values.sum(dim=0)
# Just to make type checker happy
tokens_tensors: list[float] = torch.stack(
[avg_tokens_tensor, max_tokens_tensor]
).tolist()
avg_tokens, max_tokens = tokens_tensors
balancedness = avg_tokens / max_tokens if max_tokens > 0 else 0.0
if ep_group.rank() == 0:
logger.info(
"EPLB step: %d for model %s: avg_tokens=%.2f, "
"max_tokens=%d, balancedness=%.4f",
self.expert_rearrangement_step,
eplb_model_state.model_name,
avg_tokens,
max_tokens,
balancedness,
)
# Update the expert load sliding window
if not is_dummy:
for eplb_model_state in self.model_states.values():
eplb_model_state.expert_load_window[self.expert_load_window_step] = (
eplb_model_state.expert_load_pass.clone()
)
eplb_model_state.expert_load_pass.zero_()
self.expert_load_window_step += 1
if self.expert_load_window_step >= self.expert_load_window_size:
self.expert_load_window_step = 0
# Step the expert rearrangement step
# Note that even if this is a dummy step, we still increment the
# rearrangement step and perform rearrangement to ensure all ranks are
# performing collective communication.
self.expert_rearrangement_step += 1
if self.is_async:
for eplb_model_state in self.model_states.values():
if not eplb_model_state.is_async_enabled:
continue
all_ranks_buffer_ready = False
if eplb_model_state.pending_global_ready_check:
all_ranks_buffer_ready = self._all_ranks_buffer_ready(
eplb_model_state
)
if (
eplb_model_state.is_async_enabled
and eplb_model_state.ep_buffer_ready
and all_ranks_buffer_ready
):
self.move_to_workspace(
model_state=eplb_model_state,
ep_group=ep_group,
is_profile=is_profile,
)
if (
eplb_model_state.layer_to_transfer
>= eplb_model_state.model.num_moe_layers
):
self.post_eplb(eplb_model_state, is_profile)
eplb_model_state.rebalanced = False
eplb_model_state.layer_to_transfer = 0
eplb_model_state.pending_global_ready_check = False
logger.info(
"finish async transfer for model %s rank %d layer %d",
eplb_model_state.model_name,
ep_group.rank(),
eplb_model_state.model.num_moe_layers,
)
if self.expert_rearrangement_step >= self.expert_rearrangement_step_interval:
if any(
eplb_model_state.is_async_enabled and eplb_model_state.rebalanced
for eplb_model_state in self.model_states.values()
):
# Still performing asynchronous rearrangement
return
self.expert_rearrangement_step = 0
self.rearrange()
def rearrange(
self,
is_profile: bool = False,
execute_shuffle: bool = True,
global_expert_loads: list[torch.Tensor] | None = None,
rank_mapping: dict[int, int] | None = None,
) -> torch.Tensor | None:
"""
Rearrange the experts according to the current load.
Args:
is_profile (bool): If `True`, perform a dummy rearrangement.
This is used in `profile_run` to reserve enough memory,
no memory movement will be performed. Default is False.
execute_shuffle (bool): If `True`, execute the shuffle
in elastic expert parallel (EEP). Default is True.
global_expert_loads (list[torch.Tensor] | None): The global expert
loads when scaling is done in EEP.
List of expert loads for the main and drafter
(when spec decode is used) models.
rank_mapping (dict[int, int] | None): The rank mapping
when scaling is done in EEP.
"""
ep_group = get_ep_group().device_group
ep_rank = ep_group.rank()
time_start = None
is_main_rank = ep_rank == 0
if is_main_rank:
torch.cuda.synchronize()
time_start = time.perf_counter()
logger.info(
"Rearranging experts %s %s...",
"(async mode)" if self.is_async else "sync mode",
"(profile)" if is_profile else "",
)
if global_expert_loads is None:
# Map the physical expert load to global logical experts
global_expert_load_windows = []
if not execute_shuffle:
num_models = torch.tensor(
[len(self.model_states)], dtype=torch.int32, device="cpu"
)
torch.distributed.broadcast(
num_models, group=get_ep_group().cpu_group, group_src=0
)
for eplb_model_state in self.model_states.values():
logical_expert_load_window = torch.zeros(
self.expert_load_window_size,
eplb_model_state.model.num_moe_layers,
eplb_model_state.model.num_logical_experts,
dtype=eplb_model_state.expert_load_window.dtype,
device=eplb_model_state.expert_load_window.device,
)
logical_expert_load_window.scatter_add_(
dim=-1,
index=eplb_model_state.physical_to_logical_map.unsqueeze(0)
.expand_as(eplb_model_state.expert_load_window)
.long(),
src=eplb_model_state.expert_load_window,
)
if not execute_shuffle:
metadata = torch.tensor(
[
eplb_model_state.model.num_moe_layers,
eplb_model_state.model.num_logical_experts,
eplb_model_state.physical_to_logical_map.shape[1],
],
dtype=torch.int32,
device="cpu",
)
torch.distributed.broadcast(
metadata, group=get_ep_group().cpu_group, group_src=0
)
global_expert_load_window = logical_expert_load_window.sum(dim=0)
global_expert_load_windows.append(global_expert_load_window)
# Perform all-reduce to get the expert load across all ranks for each model
global_expert_load_windows = self._allreduce_list(
global_expert_load_windows
)
if not execute_shuffle:
for eplb_model_state, global_expert_load_window in zip(
self.model_states.values(), global_expert_load_windows
):
# (num_moe_layers, old_num_physical_experts)
old_global_expert_indices = eplb_model_state.physical_to_logical_map
torch.distributed.broadcast(
old_global_expert_indices, group=ep_group, group_src=0
)
if not execute_shuffle:
return global_expert_load_windows
else:
assert execute_shuffle
global_expert_load_windows = global_expert_loads
# TODO(bowen): Treat differently for prefill and decode nodes
eplb_model_state = next(iter(self.model_states.values()))
model = eplb_model_state.model
num_replicas = model.num_physical_experts
num_groups = model.num_expert_groups
if rank_mapping is not None and len(rank_mapping) == ep_group.size():
# NOTE(yongji): scale down, we need to rebalance the experts on
# remaining GPUs, transfer the experts while we haven't shutdown
# the GPUs to be released.
cpu_group = get_ep_group().cpu_group
num_nodes = _node_count_with_rank_mapping(cpu_group, rank_mapping)
num_gpus = sum(new_rank != -1 for new_rank in rank_mapping.values())
num_replicas = (
num_replicas // ep_group.size() * num_gpus
) # handle num replicas change
else:
num_nodes = get_node_count()
num_gpus = ep_group.size()
if num_gpus % num_nodes != 0:
num_nodes = 1
logger.warning_once(
f"num_gpus % num_nodes != 0, "
"not using hierarchical rearrangement algorithm.\n"
f"{num_gpus=}, {num_nodes=}"
)
# Get new expert mappings
for eplb_model_state, global_expert_load_window in zip(
self.model_states.values(), global_expert_load_windows
):
# Get new expert mappings for the model
(
new_physical_to_logical_map,
new_logical_to_physical_map,
new_logical_replica_count,
) = self.policy.rebalance_experts(
global_expert_load_window,
num_replicas,
num_groups,
num_nodes,
num_gpus,
)
if not eplb_model_state.is_async_enabled or is_profile:
# Update expert weights
rearrange_expert_weights_inplace(
eplb_model_state.physical_to_logical_map,
new_physical_to_logical_map,
eplb_model_state.model.expert_weights,
ep_group,
is_profile,
rank_mapping,
)
if not is_profile:
if (
eplb_model_state.physical_to_logical_map.shape[1]
!= new_physical_to_logical_map.shape[1]
):
eplb_model_state.physical_to_logical_map = (
new_physical_to_logical_map.to(
eplb_model_state.physical_to_logical_map.device
)
)
else:
eplb_model_state.physical_to_logical_map.copy_(
new_physical_to_logical_map
)
max_physical_slots = new_logical_to_physical_map.shape[-1]
assert (
max_physical_slots
<= eplb_model_state.logical_to_physical_map.shape[-1]
)
new_logical_to_physical_map = torch.nn.functional.pad(
new_logical_to_physical_map,
(
0,
eplb_model_state.logical_to_physical_map.shape[-1]
- max_physical_slots,
),
value=-1,
)
eplb_model_state.logical_to_physical_map.copy_(
new_logical_to_physical_map
)
eplb_model_state.logical_replica_count.copy_(
new_logical_replica_count
)
if is_main_rank:
assert time_start is not None
torch.cuda.synchronize()
time_end = time.perf_counter()
logger.info(
"Rearranged experts%sin %.2f seconds.",
" (profile) " if is_profile else " ",
time_end - time_start,
)
else:
device = eplb_model_state.physical_to_logical_map.device
new_physical = new_physical_to_logical_map.to(device)
max_slots = eplb_model_state.logical_to_physical_map.shape[-1]
padded_logical = torch.nn.functional.pad(
new_logical_to_physical_map,
(0, max(0, max_slots - new_logical_to_physical_map.shape[-1])),
value=-1,
).to(eplb_model_state.logical_to_physical_map.device)
new_replica = new_logical_replica_count.to(
eplb_model_state.logical_replica_count.device
)
eplb_model_state.new_physical_to_logical_map = new_physical
eplb_model_state.new_logical_to_physical_map = padded_logical
eplb_model_state.new_logical_replica_count = new_replica
eplb_model_state.rebalanced = True
eplb_model_state.layer_to_transfer = 0
eplb_model_state.pending_global_ready_check = True
# Signal async thread to start transferring layers
if self.is_async and (not is_profile):
self.rearrange_event.set()
return None
def start_async_loop(
self,
rank_mapping: dict[int, int] | None = None,
is_profile: bool = False,
):
if not self.is_async:
return
if self.async_worker is None:
self.async_worker = start_async_worker(
self,
rank_mapping=rank_mapping,
is_profile=is_profile,
)
def _update_layer_mapping_from_new(
self, model_state: EplbModelState, layer: int
) -> None:
if (
model_state.new_physical_to_logical_map is None
or model_state.new_logical_to_physical_map is None
or model_state.new_logical_replica_count is None
):
return
target_device = model_state.physical_to_logical_map.device
new_physical = model_state.new_physical_to_logical_map
if model_state.physical_to_logical_map.shape[1] != new_physical.shape[1]:
model_state.physical_to_logical_map = new_physical.to(target_device)
else:
model_state.physical_to_logical_map[layer].copy_(
new_physical[layer].to(target_device)
)
logical_device = model_state.logical_to_physical_map.device
new_logical = model_state.new_logical_to_physical_map[layer].to(logical_device)
max_slots = model_state.logical_to_physical_map.shape[-1]
slot_delta = max_slots - new_logical.shape[-1]
if slot_delta > 0:
new_logical = torch.nn.functional.pad(
new_logical, (0, slot_delta), value=-1
)
model_state.logical_to_physical_map[layer].copy_(new_logical)
replica_device = model_state.logical_replica_count.device
model_state.logical_replica_count[layer].copy_(
model_state.new_logical_replica_count[layer].to(replica_device)
)
def _all_ranks_buffer_ready(self, model_state: EplbModelState) -> bool:
parallel_state = get_ep_group()
cpu_group = getattr(parallel_state, "cpu_group", None)
if cpu_group is not None and cpu_group.size() > 1:
flag = torch.tensor(
(int(model_state.ep_buffer_ready),), dtype=torch.int32, device="cpu"
)
all_reduce(flag, group=cpu_group)
return int(flag.item()) == cpu_group.size()
device_group = parallel_state.device_group
if device_group.size() <= 1:
return bool(model_state.ep_buffer_ready)
device = getattr(
parallel_state, "device", model_state.physical_to_logical_map.device
)
flag = torch.tensor(
(int(model_state.ep_buffer_ready),), dtype=torch.int32, device=device
)
all_reduce(flag, group=device_group)
return int(flag.item()) == device_group.size()
def move_to_workspace(
self,
model_state: EplbModelState,
ep_group: ProcessGroup,
is_profile: bool = False,
):
if not model_state.buffer_lock.acquire(blocking=False):
return
try:
assert model_state.new_physical_to_logical_map is not None
device_index = model_state.cuda_device_index or self.cuda_device_index
if model_state.buffer_ready_event is not None and device_index is not None:
stream = torch.cuda.current_stream(device=device_index)
stream.wait_event(model_state.buffer_ready_event)
model_state.buffer_ready_event = None
move_from_buffer(
expert_weights=model_state.model.expert_weights[
model_state.layer_to_transfer
],
expert_weights_buffer=model_state.expert_buffer,
is_unchanged=model_state.is_unchanged,
is_received_locally=model_state.is_received_locally,
experts_recv_loc=model_state.experts_recv_loc,
new_indices=model_state.new_physical_to_logical_map[
model_state.layer_to_transfer
].tolist(),
ep_group=ep_group,
)
transferred_layer = model_state.layer_to_transfer
self._update_layer_mapping_from_new(model_state, transferred_layer)
# After the main thread consumes, advance layer_to_transfer
model_state.layer_to_transfer += 1
model_state.ep_buffer_ready = 0
logger.info(
"model %s successfully move_to_workspace layer %d",
model_state.model_name,
transferred_layer,
)
finally:
try:
model_state.buffer_lock.release()
except Exception as e:
logger.error(
"Rank %d: buffer_lock release failed in move_to_workspace: %s",
ep_group.rank(),
str(e),
)
def post_eplb(self, model_state: EplbModelState, is_profile: bool = False) -> None:
assert model_state.new_physical_to_logical_map is not None
assert model_state.new_logical_to_physical_map is not None
assert model_state.new_logical_replica_count is not None
if not is_profile:
for layer_idx in range(model_state.physical_to_logical_map.shape[0]):
self._update_layer_mapping_from_new(model_state, layer_idx)
model_state.new_physical_to_logical_map = None
model_state.new_logical_to_physical_map = None
model_state.new_logical_replica_count = None
@staticmethod
def recv_state() -> tuple[list[torch.Tensor], list[torch.Tensor]]:
"""
Receive the expert load and old placement from the master rank.
"""
ep_group = get_ep_group()
num_models = torch.empty(1, dtype=torch.int32, device="cpu")
torch.distributed.broadcast(num_models, group=ep_group.cpu_group, group_src=0)
num_models = num_models.item()
global_expert_loads = []
old_global_expert_indices_per_model = []
for _ in range(num_models):
metadata = torch.empty(3, dtype=torch.int32, device="cpu")
torch.distributed.broadcast(metadata, group=ep_group.cpu_group, group_src=0)
num_moe_layers, num_logical_experts, num_old_physical_experts = (
metadata.tolist()
)
global_expert_load = torch.zeros(
(num_moe_layers, num_logical_experts),
dtype=torch.int64,
device=ep_group.device,
)
all_reduce(global_expert_load, group=ep_group.device_group)
old_global_expert_indices = torch.empty(
(num_moe_layers, num_old_physical_experts),
dtype=torch.int64,
device=ep_group.device,
)
torch.distributed.broadcast(
old_global_expert_indices,
group=ep_group.device_group,
group_src=0,
)
global_expert_loads.append(global_expert_load)
old_global_expert_indices_per_model.append(old_global_expert_indices)
return global_expert_loads, old_global_expert_indices_per_model
@classmethod
def get_eep_state(
cls, parallel_config: ParallelConfig
) -> tuple[
list[torch.Tensor] | None,
list[torch.Tensor] | None,
dict[int, int] | None,
]:
num_local_physical_experts = torch.empty(1, dtype=torch.int32, device="cpu")
torch.distributed.broadcast(
num_local_physical_experts,
group=get_ep_group().cpu_group,
group_src=0,
)
num_local_physical_experts = int(num_local_physical_experts.item())
new_ep_size = get_ep_group().world_size
global_expert_loads, old_global_expert_indices_per_model = (
EplbState.recv_state()
)
# EP configuration for all models has to be the same so as eplb config
num_logical_experts = global_expert_loads[0].shape[1]
parallel_config.eplb_config.num_redundant_experts = (
num_local_physical_experts * new_ep_size - num_logical_experts
)
assert (
old_global_expert_indices_per_model[0].shape[1] % num_local_physical_experts
== 0
)
old_ep_size = (
old_global_expert_indices_per_model[0].shape[1]
// num_local_physical_experts
)
rank_mapping = {old_ep_rank: old_ep_rank for old_ep_rank in range(old_ep_size)}
return (
global_expert_loads,
old_global_expert_indices_per_model,
rank_mapping,
)
def _allreduce_list(self, tensor_list: list[torch.Tensor]) -> list[torch.Tensor]:
"""
All-reduce a list of tensors.
"""
if len(tensor_list) == 1:
all_reduce(tensor_list[0], group=get_ep_group().device_group)
return tensor_list
assert all(t.dim() == 2 for t in tensor_list), "All tensors must be 2D."
assert all(t.shape[1] == tensor_list[0].shape[1] for t in tensor_list), (
"All tensors must have the same shape[1]."
)
# Concatenate, all_reduce, then unpack to original shapes.
# We assume all tensors are 2D and shape[1] (num_physical_experts)
# is the same across all models.
shapes = [t.shape for t in tensor_list]
concat_tensor = torch.cat(tensor_list, dim=0)
ep_group = get_ep_group().device_group
all_reduce(concat_tensor, group=ep_group)
all_reduce_list = []
offset = 0
for shape in shapes:
all_reduce_list.append(concat_tensor[offset : offset + shape[0], :])
offset += shape[0]
return all_reduce_list
def _sync_load_pass(self) -> list[torch.Tensor]:
"""
Sync the expert load pass across all ranks for log stats.
Doesn't update the expert load pass in eplb_model_state.
"""
load_pass_list = []
for eplb_model_state in self.model_states.values():
load_pass_list.append(eplb_model_state.expert_load_pass.clone())
return self._allreduce_list(load_pass_list)
def _node_count_with_rank_mapping(
pg: ProcessGroup | StatelessProcessGroup,
rank_mapping: dict[int, int],
) -> int:
if isinstance(pg, ProcessGroup):
world_size = torch.distributed.get_world_size(group=pg)
else:
world_size = pg.world_size
if world_size == 1:
return 1
# Build node assignment map
node_assignment = [0] * world_size # rank -> node_id
next_node_id = 0
for current_rank in range(world_size):
if node_assignment[current_rank] != 0:
continue # Already assigned to a node
assert current_rank in rank_mapping
if rank_mapping[current_rank] == -1:
continue # Pending shutdown
# Assign current rank to a new node
next_node_id += 1
node_assignment[current_rank] = next_node_id
# Find all ranks on the same node as current_rank
same_node_flags = in_the_same_node_as(pg, current_rank)
for other_rank, is_same_node in enumerate(same_node_flags):
if is_same_node and node_assignment[other_rank] == 0:
node_assignment[other_rank] = next_node_id
return next_node_id