mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-19 04:25:01 +08:00
799 lines
28 KiB
Python
799 lines
28 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
from collections.abc import Iterable
|
|
from itertools import islice
|
|
from typing import Any
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from vllm.attention import Attention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, ModelConfig, VllmConfig, get_current_vllm_config
|
|
from vllm.distributed import (
|
|
get_ep_group,
|
|
get_pp_group,
|
|
get_tensor_model_parallel_world_size,
|
|
)
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.fused_moe import FusedMoE
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.mamba.mamba_utils import (
|
|
MambaStateDtypeCalculator,
|
|
MambaStateShapeCalculator,
|
|
)
|
|
from vllm.model_executor.layers.mamba.short_conv import ShortConv
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
DEFAULT_VOCAB_PADDING_SIZE,
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.transformers_utils.configs import Lfm2MoeConfig
|
|
|
|
from .interfaces import (
|
|
HasInnerState,
|
|
IsHybrid,
|
|
MixtureOfExperts,
|
|
SupportsLoRA,
|
|
SupportsPP,
|
|
SupportsQuant,
|
|
)
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
PPMissingLayer,
|
|
extract_layer_index,
|
|
is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory,
|
|
make_layers,
|
|
maybe_prefix,
|
|
)
|
|
|
|
|
|
class Lfm2MoeMlp(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
ff_dim: int,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.w1 = MergedColumnParallelLinear(
|
|
input_size=dim,
|
|
output_sizes=[ff_dim] * 2,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.w1",
|
|
)
|
|
self.w2 = RowParallelLinear(
|
|
input_size=ff_dim,
|
|
output_size=dim,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.w2",
|
|
)
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
gate_up, _ = self.w1(x)
|
|
x = self.act_fn(gate_up)
|
|
x, _ = self.w2(x)
|
|
return x
|
|
|
|
|
|
class Lfm2MoeSparseMoeBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Lfm2MoeConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
enable_eplb: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.routed_scaling_factor = config.routed_scaling_factor
|
|
|
|
self.ep_group = get_ep_group().device_group
|
|
self.ep_rank = self.ep_group.rank()
|
|
self.ep_size = self.ep_group.size()
|
|
self.n_routed_experts = config.num_experts
|
|
|
|
if self.tp_size > self.n_routed_experts:
|
|
raise ValueError(
|
|
f"Tensor parallel size {self.tp_size} is greater than "
|
|
f"the number of experts {self.n_routed_experts}."
|
|
)
|
|
|
|
# Load balancing settings.
|
|
vllm_config = get_current_vllm_config()
|
|
eplb_config = vllm_config.parallel_config.eplb_config
|
|
self.enable_eplb = enable_eplb
|
|
|
|
self.n_logical_experts = self.n_routed_experts
|
|
self.n_redundant_experts = eplb_config.num_redundant_experts
|
|
self.n_physical_experts = self.n_logical_experts + self.n_redundant_experts
|
|
self.n_local_physical_experts = self.n_physical_experts // self.ep_size
|
|
|
|
self.physical_expert_start = self.ep_rank * self.n_local_physical_experts
|
|
self.physical_expert_end = (
|
|
self.physical_expert_start + self.n_local_physical_experts
|
|
)
|
|
|
|
self.gate = ReplicatedLinear(
|
|
config.hidden_size,
|
|
config.num_experts,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.gate",
|
|
)
|
|
if config.use_expert_bias:
|
|
self.gate.e_score_correction_bias = nn.Parameter(
|
|
torch.empty(self.n_routed_experts, dtype=torch.float32)
|
|
)
|
|
else:
|
|
self.gate.e_score_correction_bias = None
|
|
|
|
self.experts = FusedMoE(
|
|
num_experts=self.n_routed_experts,
|
|
top_k=config.num_experts_per_tok,
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.moe_intermediate_size,
|
|
reduce_results=False,
|
|
renormalize=config.norm_topk_prob,
|
|
quant_config=quant_config,
|
|
use_grouped_topk=True, # needed for softmax score func
|
|
num_expert_group=1,
|
|
topk_group=1,
|
|
prefix=f"{prefix}.experts",
|
|
enable_eplb=self.enable_eplb,
|
|
num_redundant_experts=self.n_redundant_experts,
|
|
scoring_func="sigmoid",
|
|
e_score_correction_bias=self.gate.e_score_correction_bias,
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
orig_shape = hidden_states.shape
|
|
hidden_dim = hidden_states.shape[-1]
|
|
hidden_states = hidden_states.view(-1, hidden_dim)
|
|
|
|
# router_logits: (num_tokens, n_experts)
|
|
router_logits, _ = self.gate(hidden_states)
|
|
final_hidden_states = (
|
|
self.experts(hidden_states=hidden_states, router_logits=router_logits)
|
|
* self.routed_scaling_factor
|
|
)
|
|
|
|
if self.tp_size > 1:
|
|
final_hidden_states = self.experts.maybe_all_reduce_tensor_model_parallel( # noqa E501
|
|
final_hidden_states
|
|
)
|
|
|
|
return final_hidden_states.view(orig_shape)
|
|
|
|
|
|
class Lfm2MoeAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Lfm2MoeConfig,
|
|
layer_idx: int,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
num_kv_heads: int,
|
|
rope_theta: float = 10000,
|
|
rope_scaling: dict[str, Any] | None = None,
|
|
max_position_embeddings: int = 8192,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
self.hidden_size = hidden_size
|
|
self.num_kv_heads = num_kv_heads
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.total_num_kv_heads = num_kv_heads
|
|
if self.total_num_kv_heads >= tp_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
self.head_dim = self.hidden_size // self.total_num_heads
|
|
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
self.rope_theta = rope_theta
|
|
self.max_position_embeddings = max_position_embeddings
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
hidden_size=self.hidden_size,
|
|
head_size=self.head_dim,
|
|
total_num_heads=self.total_num_heads,
|
|
total_num_kv_heads=self.total_num_kv_heads,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
self.out_proj = RowParallelLinear(
|
|
input_size=self.total_num_heads * self.head_dim,
|
|
output_size=self.hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.out_proj",
|
|
)
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=self.max_position_embeddings,
|
|
base=self.rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
is_neox_style=True,
|
|
)
|
|
self.attn = Attention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
prefix=f"{prefix}.attn",
|
|
)
|
|
self.q_layernorm = RMSNorm(self.head_dim, eps=config.norm_eps)
|
|
self.k_layernorm = RMSNorm(self.head_dim, eps=config.norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
n_tokens, _ = hidden_states.shape
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
q = q.view(n_tokens, self.num_heads, self.head_dim).contiguous()
|
|
k = k.view(n_tokens, self.num_kv_heads, self.head_dim).contiguous()
|
|
q = self.q_layernorm(q)
|
|
k = self.k_layernorm(k)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
q = q.view(n_tokens, self.num_heads * self.head_dim)
|
|
k = k.view(n_tokens, self.num_kv_heads * self.head_dim)
|
|
attn_output = self.attn(q, k, v)
|
|
output, _ = self.out_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class Lfm2MoeAttentionDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Lfm2MoeConfig,
|
|
layer_idx: int,
|
|
model_config: ModelConfig | None = None,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
enable_eplb: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
self.prefix = prefix
|
|
self.config = config
|
|
self.layer_idx = layer_idx
|
|
|
|
rope_theta = getattr(config, "rope_theta", 10000)
|
|
rope_scaling = getattr(config, "rope_scaling", None)
|
|
if rope_scaling is not None and getattr(
|
|
config, "original_max_position_embeddings", None
|
|
):
|
|
rope_scaling["original_max_position_embeddings"] = (
|
|
config.original_max_position_embeddings
|
|
)
|
|
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
|
|
|
|
self.self_attn = Lfm2MoeAttention(
|
|
config=config,
|
|
layer_idx=layer_idx,
|
|
hidden_size=config.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
rope_theta=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
max_position_embeddings=max_position_embeddings,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.self_attn",
|
|
)
|
|
|
|
if layer_idx < config.num_dense_layers:
|
|
self.feed_forward = Lfm2MoeMlp(
|
|
dim=config.hidden_size,
|
|
ff_dim=config.intermediate_size,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.feed_forward",
|
|
)
|
|
else:
|
|
self.feed_forward = Lfm2MoeSparseMoeBlock(
|
|
config=config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.feed_forward",
|
|
enable_eplb=enable_eplb,
|
|
)
|
|
|
|
self.operator_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
|
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
**kwargs,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.operator_norm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.operator_norm(hidden_states, residual)
|
|
hidden_states = self.self_attn(positions=positions, hidden_states=hidden_states)
|
|
hidden_states, residual = self.ffn_norm(hidden_states, residual)
|
|
return self.feed_forward(hidden_states), residual
|
|
|
|
|
|
class Lfm2MoeShortConvDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Lfm2MoeConfig,
|
|
layer_idx: int,
|
|
model_config: ModelConfig | None = None,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
enable_eplb: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
self.conv = ShortConv(
|
|
config=config,
|
|
dim=config.hidden_size,
|
|
layer_idx=layer_idx,
|
|
model_config=model_config,
|
|
cache_config=cache_config,
|
|
prefix=f"{prefix}.conv",
|
|
)
|
|
|
|
if layer_idx < config.num_dense_layers:
|
|
self.feed_forward = Lfm2MoeMlp(
|
|
dim=config.hidden_size,
|
|
ff_dim=config.intermediate_size,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.feed_forward",
|
|
)
|
|
else:
|
|
self.feed_forward = Lfm2MoeSparseMoeBlock(
|
|
config=config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.feed_forward",
|
|
enable_eplb=enable_eplb,
|
|
)
|
|
|
|
self.operator_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
|
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
**kwargs,
|
|
):
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.operator_norm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.operator_norm(hidden_states, residual)
|
|
output = torch.empty_like(hidden_states)
|
|
self.conv(
|
|
hidden_states,
|
|
output,
|
|
)
|
|
hidden_states, residual = self.ffn_norm(output, residual)
|
|
hidden_states = self.feed_forward(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
@support_torch_compile
|
|
class Lfm2MoeModel(nn.Module):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
model_config = vllm_config.model_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
lora_config = vllm_config.lora_config
|
|
parallel_config = vllm_config.parallel_config
|
|
enable_eplb = parallel_config.enable_eplb
|
|
eplb_config = parallel_config.eplb_config
|
|
self.num_redundant_experts = eplb_config.num_redundant_experts
|
|
|
|
self.config = config
|
|
lora_vocab = (
|
|
(lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1))
|
|
if lora_config
|
|
else 0
|
|
)
|
|
self.vocab_size = config.vocab_size + lora_vocab
|
|
self.org_vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
self.vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size
|
|
)
|
|
|
|
def get_layer(prefix: str):
|
|
layer_idx = extract_layer_index(prefix)
|
|
is_attn = self.config.layer_types[layer_idx] == "full_attention"
|
|
layer_class = (
|
|
Lfm2MoeAttentionDecoderLayer
|
|
if is_attn
|
|
else Lfm2MoeShortConvDecoderLayer
|
|
)
|
|
return layer_class(
|
|
config,
|
|
layer_idx,
|
|
model_config,
|
|
cache_config,
|
|
quant_config=quant_config,
|
|
prefix=prefix,
|
|
enable_eplb=enable_eplb,
|
|
)
|
|
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers"
|
|
)
|
|
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
|
|
["hidden_states", "residual"], config.hidden_size
|
|
)
|
|
|
|
if get_pp_group().is_last_rank:
|
|
self.embedding_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
|
else:
|
|
self.embedding_norm = PPMissingLayer()
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.get_input_embeddings(input_ids)
|
|
residual = None
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
residual = intermediate_tensors["residual"]
|
|
|
|
for layer in islice(self.layers, self.start_layer, self.end_layer):
|
|
hidden_states, residual = layer(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
residual=residual,
|
|
)
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors(
|
|
{"hidden_states": hidden_states, "residual": residual}
|
|
)
|
|
hidden_states, _ = self.embedding_norm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
|
|
return FusedMoE.make_expert_params_mapping(
|
|
ckpt_gate_proj_name="w1",
|
|
ckpt_down_proj_name="w2",
|
|
ckpt_up_proj_name="w3",
|
|
num_experts=self.config.num_experts,
|
|
num_redundant_experts=self.num_redundant_experts,
|
|
)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
(".qkv_proj", ".q_proj", "q"),
|
|
(".qkv_proj", ".k_proj", "k"),
|
|
(".qkv_proj", ".v_proj", "v"),
|
|
(".w1", ".w1", 0),
|
|
(".w1", ".w3", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
expert_params_mapping = self.get_expert_mapping()
|
|
for name, loaded_weight in weights:
|
|
if "expert_bias" in name:
|
|
name = name.replace("expert_bias", "gate.e_score_correction_bias")
|
|
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
# Skip non-stacked layers and experts (experts handled below).
|
|
if weight_name not in name:
|
|
continue
|
|
|
|
if ("feed_forward.experts." in name) and name not in params_dict:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if (
|
|
name.endswith(".bias") or name.endswith("_bias")
|
|
) and name not in params_dict:
|
|
continue
|
|
# Skip layers on other devices.
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
for mapping in expert_params_mapping:
|
|
param_name, weight_name, expert_id, shard_id = mapping
|
|
|
|
if weight_name not in name:
|
|
continue
|
|
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip layers on other devices.
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
# Skip loading extra bias for GPTQ models.
|
|
if (
|
|
name.endswith(".bias") or name.endswith("_bias")
|
|
) and name not in params_dict:
|
|
continue
|
|
param = params_dict[name]
|
|
|
|
weight_loader = param.weight_loader
|
|
weight_loader(
|
|
param,
|
|
loaded_weight,
|
|
name,
|
|
shard_id=shard_id,
|
|
expert_id=expert_id,
|
|
)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if (
|
|
name.endswith(".bias") or name.endswith("_bias")
|
|
) and name not in params_dict:
|
|
continue
|
|
# Skip layers on other devices.
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(
|
|
param, "weight_loader", default_weight_loader
|
|
)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class Lfm2MoeForCausalLM(
|
|
nn.Module,
|
|
HasInnerState,
|
|
SupportsLoRA,
|
|
SupportsPP,
|
|
IsHybrid,
|
|
SupportsQuant,
|
|
MixtureOfExperts,
|
|
):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
],
|
|
"w1": [
|
|
"w1",
|
|
"w3",
|
|
],
|
|
}
|
|
|
|
# LoRA specific attributes
|
|
embedding_modules = {
|
|
"embed_tokens": "input_embeddings",
|
|
"lm_head": "output_embeddings",
|
|
}
|
|
embedding_padding_modules = ["lm_head"]
|
|
|
|
@classmethod
|
|
def get_mamba_state_dtype_from_config(
|
|
cls,
|
|
vllm_config: "VllmConfig",
|
|
) -> tuple[torch.dtype, ...]:
|
|
return MambaStateDtypeCalculator.short_conv_state_dtype(
|
|
vllm_config.model_config.dtype,
|
|
vllm_config.cache_config.mamba_cache_dtype,
|
|
)
|
|
|
|
@classmethod
|
|
def get_mamba_state_shape_from_config(
|
|
cls,
|
|
vllm_config: "VllmConfig",
|
|
) -> tuple[tuple[int, int]]:
|
|
"""Calculate shapes for LFM2's convolutional cache.
|
|
|
|
Args:
|
|
vllm_config: vLLM config
|
|
|
|
Returns:
|
|
Tuple containing:
|
|
- conv_state_shape: Shape for convolutional state cache
|
|
"""
|
|
parallel_config = vllm_config.parallel_config
|
|
hf_config = vllm_config.model_config.hf_config
|
|
|
|
return MambaStateShapeCalculator.short_conv_state_shape(
|
|
tp_world_size=parallel_config.tensor_parallel_size,
|
|
intermediate_size=hf_config.hidden_size,
|
|
conv_kernel=hf_config.conv_L_cache,
|
|
)
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
cache_config = vllm_config.cache_config
|
|
lora_config = vllm_config.lora_config
|
|
assert not cache_config.enable_prefix_caching, (
|
|
"Lfm2Moe currently does not support prefix caching"
|
|
)
|
|
|
|
super().__init__()
|
|
self.config = config
|
|
self.model = Lfm2MoeModel(
|
|
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
|
|
)
|
|
|
|
if get_pp_group().is_last_rank:
|
|
self.unpadded_vocab_size = self.config.vocab_size
|
|
if lora_config:
|
|
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
|
|
|
self.lm_head = ParallelLMHead(
|
|
self.unpadded_vocab_size,
|
|
config.hidden_size,
|
|
org_num_embeddings=config.vocab_size,
|
|
padding_size=(
|
|
DEFAULT_VOCAB_PADDING_SIZE
|
|
# We need bigger padding if using lora for kernel
|
|
# compatibility
|
|
if not lora_config
|
|
else lora_config.lora_vocab_padding_size
|
|
),
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
|
|
else:
|
|
self.lm_head = PPMissingLayer()
|
|
|
|
self.logits_processor = LogitsProcessor(
|
|
self.unpadded_vocab_size, config.vocab_size
|
|
)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
# Set MoE hyperparameters
|
|
self.expert_weights = []
|
|
|
|
self.moe_layers: list[FusedMoE] = []
|
|
example_layer = None
|
|
for layer in self.model.layers:
|
|
if isinstance(layer, PPMissingLayer):
|
|
continue
|
|
|
|
assert isinstance(
|
|
layer, (Lfm2MoeAttentionDecoderLayer, Lfm2MoeShortConvDecoderLayer)
|
|
)
|
|
if isinstance(layer.feed_forward, Lfm2MoeSparseMoeBlock):
|
|
example_layer = layer.feed_forward
|
|
self.moe_layers.append(layer.feed_forward.experts)
|
|
|
|
if example_layer is None:
|
|
raise RuntimeError(
|
|
"No Lfm2MoeSparseMoeBlock layer found in the model.layers."
|
|
)
|
|
|
|
self.num_moe_layers = len(self.moe_layers)
|
|
self.num_expert_groups = 1
|
|
self.num_shared_experts = 0
|
|
self.num_logical_experts = example_layer.n_logical_experts
|
|
self.num_physical_experts = example_layer.n_physical_experts
|
|
self.num_local_physical_experts = example_layer.n_local_physical_experts
|
|
self.num_routed_experts = example_layer.n_routed_experts
|
|
self.num_redundant_experts = example_layer.n_redundant_experts
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.get_input_embeddings(input_ids)
|
|
|
|
def set_eplb_state(
|
|
self,
|
|
expert_load_view: torch.Tensor,
|
|
logical_to_physical_map: torch.Tensor,
|
|
logical_replica_count: torch.Tensor,
|
|
) -> None:
|
|
for layer_idx, layer in enumerate(self.moe_layers):
|
|
# Register the expert weights.
|
|
self.expert_weights.append(layer.get_expert_weights())
|
|
layer.set_eplb_state(
|
|
moe_layer_idx=layer_idx,
|
|
expert_load_view=expert_load_view,
|
|
logical_to_physical_map=logical_to_physical_map,
|
|
logical_replica_count=logical_replica_count,
|
|
)
|
|
|
|
def update_physical_experts_metadata(
|
|
self,
|
|
num_physical_experts: int,
|
|
num_local_physical_experts: int,
|
|
) -> None:
|
|
assert self.num_local_physical_experts == num_local_physical_experts
|
|
self.num_physical_experts = num_physical_experts
|
|
self.num_local_physical_experts = num_local_physical_experts
|
|
self.num_redundant_experts = num_physical_experts - self.num_logical_experts
|
|
for layer in self.model.layers:
|
|
if isinstance(layer.feed_forward, Lfm2MoeSparseMoeBlock):
|
|
moe = layer.feed_forward
|
|
moe.n_local_physical_experts = num_local_physical_experts
|
|
moe.n_physical_experts = num_physical_experts
|
|
moe.n_redundant_experts = self.num_redundant_experts
|
|
moe.experts.update_expert_map()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.model(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
logits = self.logits_processor(self.lm_head, hidden_states)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(
|
|
self,
|
|
skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
|
|
)
|
|
return loader.load_weights(weights)
|
|
|
|
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
|
|
return self.model.get_expert_mapping()
|