mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-19 02:15:50 +08:00
1245 lines
47 KiB
Python
1245 lines
47 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
# Copyright 2024 The Qwen team.
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only Qwen2.5-Omni model (thinker part)."""
|
|
|
|
from collections.abc import Callable, Iterable, Mapping, Sequence
|
|
from copy import copy
|
|
from functools import partial
|
|
from typing import Annotated, Any, Literal
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import PretrainedConfig
|
|
from transformers.feature_extraction_utils import BatchFeature
|
|
from transformers.models.qwen2_5_omni.configuration_qwen2_5_omni import (
|
|
Qwen2_5OmniConfig,
|
|
Qwen2_5OmniThinkerConfig,
|
|
)
|
|
from transformers.models.qwen2_5_omni.modeling_qwen2_5_omni import (
|
|
Qwen2_5OmniAudioEncoder,
|
|
)
|
|
from transformers.models.qwen2_5_omni.processing_qwen2_5_omni import (
|
|
Qwen2_5OmniProcessor,
|
|
)
|
|
from transformers.models.whisper import WhisperFeatureExtractor
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.config.multimodal import BaseDummyOptions
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
|
from vllm.model_executor.models.qwen2_5_vl import (
|
|
Qwen2_5_VisionTransformer,
|
|
Qwen2_5_VLImageEmbeddingInputs,
|
|
Qwen2_5_VLImageInputs,
|
|
Qwen2_5_VLImagePixelInputs,
|
|
Qwen2_5_VLProcessingInfo,
|
|
Qwen2_5_VLVideoEmbeddingInputs,
|
|
Qwen2_5_VLVideoInputs,
|
|
Qwen2_5_VLVideoPixelInputs,
|
|
)
|
|
from vllm.model_executor.models.qwen2_audio import (
|
|
Qwen2AudioProcessingInfo,
|
|
_get_feat_extract_output_lengths,
|
|
)
|
|
from vllm.model_executor.models.qwen2_vl import Qwen2VLMultiModalDataParser
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (
|
|
ImageItem,
|
|
ModalityData,
|
|
MultiModalDataDict,
|
|
MultiModalFieldConfig,
|
|
MultiModalKwargsItems,
|
|
NestedTensors,
|
|
)
|
|
from vllm.multimodal.parse import (
|
|
AudioProcessorItems,
|
|
DictEmbeddingItems,
|
|
ModalityDataItems,
|
|
MultiModalDataItems,
|
|
MultiModalDataParser,
|
|
)
|
|
from vllm.multimodal.processing import (
|
|
BaseMultiModalProcessor,
|
|
MultiModalPromptUpdates,
|
|
PlaceholderFeaturesInfo,
|
|
PromptReplacement,
|
|
PromptUpdate,
|
|
)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.transformers_utils.tokenizer import encode_tokens
|
|
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
|
|
|
from .interfaces import (
|
|
MultiModalEmbeddings,
|
|
SupportsLoRA,
|
|
SupportsMRoPE,
|
|
SupportsMultiModal,
|
|
SupportsPP,
|
|
)
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
WeightsMapper,
|
|
init_vllm_registered_model,
|
|
maybe_prefix,
|
|
split_list_into_ranges,
|
|
)
|
|
from .vision import get_llm_pos_ids_for_vision
|
|
|
|
try:
|
|
import flash_attn
|
|
except (ImportError, ModuleNotFoundError):
|
|
flash_attn = None
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class Qwen2_5OmniAudioFeatureInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- na: Number of audios
|
|
- nmb: Number of mel bins
|
|
- msl: Maximum sequence length
|
|
- tsl: Total sequence length
|
|
"""
|
|
|
|
type: Literal["audio_features"]
|
|
input_features: Annotated[
|
|
torch.Tensor | list[torch.Tensor],
|
|
TensorShape("nmb", "tsl", dynamic_dims={"tsl"}),
|
|
]
|
|
|
|
feature_attention_mask: Annotated[
|
|
torch.Tensor | list[torch.Tensor],
|
|
TensorShape("na", "msl", dynamic_dims={"msl"}),
|
|
]
|
|
|
|
|
|
def create_qwen2_5_omni_thinker_field_factory(
|
|
spatial_merge_size: int,
|
|
) -> Callable[[Mapping[str, torch.Tensor]], Mapping[str, MultiModalFieldConfig]]:
|
|
def _qwen2_5_omni_thinker_field_config(hf_inputs: Mapping[str, torch.Tensor]):
|
|
audio_feature_lengths = hf_inputs.get(
|
|
"audio_feature_lengths", torch.empty((0,))
|
|
)
|
|
|
|
image_grid_thw = hf_inputs.get("image_grid_thw", torch.empty((0, 3)))
|
|
image_pixel_grid_sizes = image_grid_thw.prod(-1)
|
|
image_embed_grid_sizes = (
|
|
image_pixel_grid_sizes // spatial_merge_size // spatial_merge_size
|
|
)
|
|
|
|
video_grid_thw = hf_inputs.get("video_grid_thw", torch.empty((0, 3)))
|
|
video_grid_sizes = video_grid_thw.prod(-1)
|
|
video_embed_grid_sizes = (
|
|
video_grid_sizes // spatial_merge_size // spatial_merge_size
|
|
)
|
|
|
|
num_videos = len(video_grid_sizes)
|
|
|
|
return dict(
|
|
input_audio_features=MultiModalFieldConfig.flat_from_sizes(
|
|
"audio", audio_feature_lengths, dim=1
|
|
),
|
|
feature_attention_mask=MultiModalFieldConfig.batched("audio"),
|
|
audio_feature_lengths=MultiModalFieldConfig.batched("audio"),
|
|
pixel_values=MultiModalFieldConfig.flat_from_sizes(
|
|
"image", image_pixel_grid_sizes
|
|
),
|
|
image_embeds=MultiModalFieldConfig.flat_from_sizes(
|
|
"image", image_embed_grid_sizes
|
|
),
|
|
image_grid_thw=MultiModalFieldConfig.batched("image"),
|
|
pixel_values_videos=MultiModalFieldConfig.flat_from_sizes(
|
|
"video", video_grid_sizes
|
|
),
|
|
video_embeds=MultiModalFieldConfig.flat_from_sizes(
|
|
"video", video_embed_grid_sizes
|
|
),
|
|
video_grid_thw=MultiModalFieldConfig.batched("video"),
|
|
second_per_grid_ts=MultiModalFieldConfig.batched("video"),
|
|
use_audio_in_video=MultiModalFieldConfig.shared("video", num_videos),
|
|
)
|
|
|
|
return _qwen2_5_omni_thinker_field_config
|
|
|
|
|
|
class Qwen2_5OmniThinkerMultiModalDataParser(Qwen2VLMultiModalDataParser):
|
|
def __init__(self, spatial_merge_size: int, *args, **kwargs):
|
|
self._spatial_merge_size = spatial_merge_size
|
|
super().__init__(self._spatial_merge_size, *args, **kwargs)
|
|
|
|
def _parse_audio_data(
|
|
self,
|
|
data: dict[str, torch.Tensor] | ModalityData[ImageItem],
|
|
) -> ModalityDataItems[Any, Any]:
|
|
if isinstance(data, dict):
|
|
return DictEmbeddingItems(
|
|
data,
|
|
modality="audio",
|
|
required_fields={"input_audio_features", "audio_feature_lengths"},
|
|
fields_factory=create_qwen2_5_omni_thinker_field_factory(
|
|
self._spatial_merge_size
|
|
),
|
|
)
|
|
|
|
return super()._parse_audio_data(data)
|
|
|
|
|
|
class Qwen2_5OmniThinkerProcessingInfo(
|
|
Qwen2AudioProcessingInfo, Qwen2_5_VLProcessingInfo
|
|
):
|
|
def get_hf_config(self):
|
|
return self.ctx.get_hf_config(Qwen2_5OmniConfig).thinker_config
|
|
|
|
def get_hf_processor(self, **kwargs: object) -> Qwen2_5OmniProcessor:
|
|
return self.ctx.get_hf_processor(
|
|
Qwen2_5OmniProcessor,
|
|
use_fast=kwargs.pop("use_fast", True),
|
|
**kwargs,
|
|
)
|
|
|
|
def get_feature_extractor(self, **kwargs: object):
|
|
hf_processor = self.get_hf_processor(**kwargs)
|
|
feature_extractor = hf_processor.feature_extractor # type: ignore
|
|
assert isinstance(feature_extractor, WhisperFeatureExtractor)
|
|
return feature_extractor
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
|
|
return {"audio": None, "image": None, "video": None}
|
|
|
|
|
|
class Qwen2_5OmniThinkerDummyInputsBuilder(
|
|
BaseDummyInputsBuilder[Qwen2_5OmniThinkerProcessingInfo]
|
|
):
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
num_audios = mm_counts.get("audio", 0)
|
|
num_images = mm_counts.get("image", 0)
|
|
num_videos = mm_counts.get("video", 0)
|
|
|
|
hf_processor = self.info.get_hf_processor()
|
|
|
|
audio_token: str = hf_processor.audio_token
|
|
image_token: str = hf_processor.image_token
|
|
video_token: str = hf_processor.video_token
|
|
|
|
return (
|
|
audio_token * num_audios
|
|
+ image_token * num_images
|
|
+ video_token * num_videos
|
|
)
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
mm_options: Mapping[str, BaseDummyOptions] | None = None,
|
|
) -> MultiModalDataDict:
|
|
num_audios = mm_counts.get("audio", 0)
|
|
num_images = mm_counts.get("image", 0)
|
|
num_videos = mm_counts.get("video", 0)
|
|
|
|
feature_extractor = self.info.get_feature_extractor()
|
|
|
|
target_audio_length = (
|
|
min(
|
|
feature_extractor.chunk_length,
|
|
30,
|
|
)
|
|
* feature_extractor.sampling_rate
|
|
)
|
|
target_width, target_height = self.info.get_image_size_with_most_features()
|
|
target_num_frames = self.info.get_num_frames_with_most_features(
|
|
seq_len, mm_counts
|
|
)
|
|
|
|
image_overrides = mm_options.get("image") if mm_options else None
|
|
video_overrides = mm_options.get("video") if mm_options else None
|
|
audio_overrides = mm_options.get("audio") if mm_options else None
|
|
|
|
mm_data = {
|
|
"audio": self._get_dummy_audios(
|
|
length=target_audio_length,
|
|
num_audios=num_audios,
|
|
overrides=audio_overrides,
|
|
),
|
|
"image": self._get_dummy_images(
|
|
width=target_width,
|
|
height=target_height,
|
|
num_images=num_images,
|
|
overrides=image_overrides,
|
|
),
|
|
"video": self._get_dummy_videos(
|
|
width=target_width,
|
|
height=target_height,
|
|
num_frames=target_num_frames,
|
|
num_videos=num_videos,
|
|
overrides=video_overrides,
|
|
),
|
|
}
|
|
|
|
return mm_data
|
|
|
|
|
|
class Qwen2_5OmniThinkerMultiModalProcessor(
|
|
BaseMultiModalProcessor[Qwen2_5OmniThinkerProcessingInfo]
|
|
):
|
|
def _get_data_parser(self) -> MultiModalDataParser:
|
|
feature_extractor = self.info.get_feature_extractor()
|
|
return Qwen2_5OmniThinkerMultiModalDataParser(
|
|
spatial_merge_size=self.info.get_hf_config().vision_config.spatial_merge_size,
|
|
target_sr=feature_extractor.sampling_rate,
|
|
)
|
|
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
tok_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
mm_data = dict(mm_data)
|
|
audios = mm_data.pop("audios", [])
|
|
|
|
# NOTE: WhisperFeatureExtractor cannot handle empty list of audios
|
|
if audios:
|
|
# NOTE: Qwen2.5-Omni processor accept "audio"
|
|
mm_data["audio"] = audios
|
|
mm_kwargs = dict(
|
|
**mm_kwargs,
|
|
)
|
|
|
|
hf_inputs = super()._call_hf_processor(
|
|
prompt=prompt,
|
|
mm_data=mm_data,
|
|
mm_kwargs=mm_kwargs,
|
|
tok_kwargs=tok_kwargs,
|
|
)
|
|
|
|
input_features = hf_inputs.pop("input_features", None)
|
|
feature_attention_mask = hf_inputs.get("feature_attention_mask", None)
|
|
if "input_audio_features" not in hf_inputs and input_features is not None:
|
|
if feature_attention_mask is not None:
|
|
input_features = input_features.permute(0, 2, 1)[
|
|
feature_attention_mask.bool()
|
|
].permute(1, 0)
|
|
hf_inputs["input_audio_features"] = input_features
|
|
if (
|
|
"audio_feature_lengths" not in hf_inputs
|
|
and feature_attention_mask is not None
|
|
):
|
|
hf_inputs["audio_feature_lengths"] = feature_attention_mask.sum(-1)
|
|
|
|
video_second_per_grid = hf_inputs.get("video_second_per_grid", None)
|
|
if video_second_per_grid is not None:
|
|
hf_inputs["second_per_grid_ts"] = video_second_per_grid
|
|
|
|
use_audio_in_video = mm_kwargs.get("use_audio_in_video", False)
|
|
hf_inputs["use_audio_in_video"] = torch.tensor(use_audio_in_video)
|
|
|
|
return hf_inputs
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return create_qwen2_5_omni_thinker_field_factory(
|
|
self.info.get_hf_config().vision_config.spatial_merge_size
|
|
)(hf_inputs)
|
|
|
|
def _maybe_apply_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
prompt_ids: list[int],
|
|
mm_kwargs: MultiModalKwargsItems,
|
|
mm_prompt_updates: MultiModalPromptUpdates,
|
|
is_update_applied: bool,
|
|
) -> tuple[list[int], Mapping[str, list[PlaceholderFeaturesInfo]]]:
|
|
"""
|
|
Qwen2.5-Omni reimplements this function to handle `use_audio_in_video`.
|
|
"""
|
|
mm_item_counts = mm_items.get_all_counts()
|
|
self._validate_mm_kwargs(mm_kwargs, mm_item_counts)
|
|
self._validate_mm_updates(mm_prompt_updates, mm_item_counts)
|
|
|
|
use_audio_in_video = False
|
|
if "video" in mm_kwargs:
|
|
video_items = [item for item in mm_kwargs["video"] if item is not None]
|
|
# only check video items (if there are any)
|
|
if video_items:
|
|
use_audio_in_video = all(
|
|
item["use_audio_in_video"].data for item in video_items
|
|
)
|
|
|
|
if is_update_applied:
|
|
mm_placeholders = self._find_mm_placeholders(
|
|
prompt_ids,
|
|
mm_prompt_updates,
|
|
)
|
|
self._validate_mm_placeholders(
|
|
mm_placeholders,
|
|
mm_item_counts,
|
|
use_audio_in_video=use_audio_in_video,
|
|
)
|
|
else:
|
|
prompt_ids, mm_placeholders = self._apply_prompt_updates(
|
|
prompt_ids,
|
|
mm_prompt_updates,
|
|
)
|
|
self._validate_mm_placeholders(
|
|
mm_placeholders,
|
|
mm_item_counts,
|
|
use_audio_in_video=use_audio_in_video,
|
|
)
|
|
|
|
return prompt_ids, mm_placeholders
|
|
|
|
@classmethod
|
|
def omni_get_updates_use_audio_in_video(
|
|
cls,
|
|
thinker_config: PretrainedConfig,
|
|
audio_len: int,
|
|
video_grid_thw: list[int] | torch.Tensor,
|
|
video_second_per_grid_t: float,
|
|
) -> list[int]:
|
|
"""Get video prompt updates when `use_audio_in_video` is True.
|
|
|
|
In this case, audio and vision update ids will be split into
|
|
chunks and interleaved (details in `_omni_get_input_positions_tensor`).
|
|
|
|
<|video_bos|><|VIDEO|><|video_eos|> =>
|
|
<|video_bos|><|audio_bos|>(... chunks ...)<|audio_eos|><|video_eos|>
|
|
"""
|
|
|
|
audio_token_id = thinker_config.audio_token_index
|
|
video_token_id = thinker_config.video_token_index
|
|
audio_start_token_id = thinker_config.audio_start_token_id
|
|
audio_end_token_id = thinker_config.audio_end_token_id
|
|
seconds_per_chunk = thinker_config.seconds_per_chunk
|
|
spatial_merge_size = thinker_config.vision_config.spatial_merge_size
|
|
tokens_per_second = getattr(
|
|
thinker_config.vision_config, "tokens_per_second", 25
|
|
)
|
|
|
|
grid_t = video_grid_thw[0]
|
|
grid_h = video_grid_thw[1]
|
|
grid_w = video_grid_thw[2]
|
|
t_ntoken_per_chunk = int(tokens_per_second * seconds_per_chunk)
|
|
t_index = (
|
|
torch.arange(grid_t) * video_second_per_grid_t * tokens_per_second
|
|
).long()
|
|
t_index_split_chunk = split_list_into_ranges(t_index, t_ntoken_per_chunk)
|
|
|
|
updates = [audio_start_token_id]
|
|
added_audio_len = 0
|
|
for t_chunk in t_index_split_chunk:
|
|
vision_ntoken_per_chunk = (
|
|
len(t_chunk) * grid_h * grid_w // (spatial_merge_size**2)
|
|
)
|
|
updates.extend([video_token_id] * vision_ntoken_per_chunk)
|
|
|
|
audio_chunk_size = min(t_ntoken_per_chunk, audio_len - added_audio_len)
|
|
updates.extend(audio_chunk_size * [audio_token_id])
|
|
added_audio_len += audio_chunk_size
|
|
if added_audio_len < audio_len:
|
|
updates.extend((audio_len - added_audio_len) * [audio_token_id])
|
|
updates.extend([audio_end_token_id])
|
|
|
|
return updates
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, Any],
|
|
out_mm_kwargs: MultiModalKwargsItems,
|
|
) -> Sequence[PromptUpdate]:
|
|
processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
|
|
tokenizer = self.info.get_tokenizer()
|
|
image_processor = self.info.get_image_processor(**hf_processor_mm_kwargs)
|
|
vocab = tokenizer.get_vocab()
|
|
|
|
audio_token = processor.audio_token
|
|
image_token = processor.image_token
|
|
video_token = processor.video_token
|
|
audio_token_id = vocab[audio_token]
|
|
image_token_id = vocab[image_token]
|
|
video_token_id = vocab[video_token]
|
|
|
|
out_mm_data = out_mm_kwargs.get_data()
|
|
audio_feature_lengths = out_mm_data.get("audio_feature_lengths")
|
|
feature_attention_mask = out_mm_data.get("feature_attention_mask")
|
|
if audio_feature_lengths is None and feature_attention_mask is None:
|
|
audio_output_lengths = []
|
|
elif audio_feature_lengths is not None:
|
|
_, audio_output_lens = _get_feat_extract_output_lengths(
|
|
audio_feature_lengths
|
|
)
|
|
audio_output_lengths = audio_output_lens.tolist()
|
|
elif feature_attention_mask is not None:
|
|
assert isinstance(feature_attention_mask, torch.Tensor)
|
|
_, audio_output_lens = _get_feat_extract_output_lengths(
|
|
feature_attention_mask.sum(-1)
|
|
)
|
|
audio_output_lengths = audio_output_lens.tolist()
|
|
|
|
# number of audios read from video.
|
|
audio_in_video_item_idx = 0
|
|
|
|
def get_replacement_qwen2_audio(item_idx: int):
|
|
item_idx += audio_in_video_item_idx
|
|
|
|
num_features = audio_output_lengths[item_idx]
|
|
if num_features == 0:
|
|
audios = mm_items.get_items("audio", AudioProcessorItems)
|
|
audio = audios.get(item_idx)
|
|
raise ValueError(
|
|
f"The audio {audio} (len={len(audio)}) is too short "
|
|
"to be represented inside the model"
|
|
)
|
|
|
|
return [audio_token_id] * num_features
|
|
|
|
def get_replacement_qwen2_vision(item_idx: int, modality: str):
|
|
grid_thw = out_mm_data[f"{modality}_grid_thw"][item_idx]
|
|
assert isinstance(grid_thw, torch.Tensor)
|
|
merge_length = image_processor.merge_size**2
|
|
|
|
token_id = image_token_id if modality == "image" else video_token_id
|
|
return [token_id] * (int(grid_thw.prod()) // merge_length)
|
|
|
|
use_audio_in_video = hf_processor_mm_kwargs.get("use_audio_in_video", False)
|
|
thinker_config = self.info.get_hf_config()
|
|
|
|
def get_replacement_qwen2_use_audio_in_video(item_idx: int):
|
|
nonlocal audio_in_video_item_idx
|
|
|
|
audio_num_features = audio_output_lengths[
|
|
audio_in_video_item_idx + item_idx
|
|
]
|
|
video_grid_thw = out_mm_data["video_grid_thw"][item_idx]
|
|
|
|
audio_in_video_item_idx += 1
|
|
|
|
second_per_grid_ts = hf_processor_mm_kwargs.get("second_per_grid_ts", None)
|
|
if second_per_grid_ts:
|
|
video_second_per_grid_t = second_per_grid_ts[item_idx]
|
|
else:
|
|
video_second_per_grid_t = 1.0
|
|
|
|
return self.omni_get_updates_use_audio_in_video(
|
|
thinker_config=thinker_config,
|
|
audio_len=audio_num_features,
|
|
video_grid_thw=video_grid_thw,
|
|
video_second_per_grid_t=video_second_per_grid_t,
|
|
)
|
|
|
|
video_replacement_fn = (
|
|
get_replacement_qwen2_use_audio_in_video
|
|
if use_audio_in_video
|
|
else partial(get_replacement_qwen2_vision, modality="video")
|
|
)
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="audio",
|
|
target=audio_token,
|
|
replacement=get_replacement_qwen2_audio,
|
|
),
|
|
PromptReplacement(
|
|
modality="image",
|
|
target=image_token,
|
|
replacement=partial(get_replacement_qwen2_vision, modality="image"),
|
|
),
|
|
PromptReplacement(
|
|
modality="video",
|
|
target=video_token,
|
|
replacement=video_replacement_fn,
|
|
),
|
|
]
|
|
|
|
def _apply_hf_processor_main(
|
|
self,
|
|
prompt: str | list[int],
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
tokenization_kwargs: Mapping[str, object],
|
|
*,
|
|
enable_hf_prompt_update: bool,
|
|
) -> tuple[list[int], BatchFeature, bool]:
|
|
"""
|
|
Qwen2.5-Omni reimplements this function to handle text only.
|
|
"""
|
|
if isinstance(prompt, str):
|
|
if enable_hf_prompt_update:
|
|
return self._apply_hf_processor_text_mm(
|
|
prompt_text=prompt,
|
|
mm_items=mm_items,
|
|
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
tokenization_kwargs=tokenization_kwargs,
|
|
)
|
|
tokenizer = self.info.get_tokenizer()
|
|
prompt_ids = encode_tokens(tokenizer, prompt)
|
|
else:
|
|
prompt_ids = self._apply_hf_processor_tokens_only(prompt)
|
|
|
|
mm_processed_data = self._apply_hf_processor_mm_only(
|
|
mm_items=mm_items,
|
|
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
tokenization_kwargs=tokenization_kwargs,
|
|
)
|
|
|
|
return prompt_ids, mm_processed_data, False
|
|
|
|
def _apply_hf_processor_mm_only(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
tokenization_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
"""
|
|
Qwen2.5-Omni reimplements this function to handle `use_audio_in_video`.
|
|
"""
|
|
mm_counts = mm_items.get_all_counts()
|
|
|
|
use_audio_in_video = hf_processor_mm_kwargs.get("use_audio_in_video", False)
|
|
if use_audio_in_video and "video" in mm_counts:
|
|
assert "audio" in mm_counts
|
|
mm_counts["audio"] -= mm_counts["video"]
|
|
|
|
_, mm_processed_data, _ = self._apply_hf_processor_text_mm(
|
|
prompt_text=self.dummy_inputs.get_dummy_text(mm_counts),
|
|
mm_items=mm_items,
|
|
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
|
|
tokenization_kwargs=tokenization_kwargs,
|
|
)
|
|
|
|
return mm_processed_data
|
|
|
|
def _validate_mm_placeholders(
|
|
self,
|
|
mm_placeholders: Mapping[str, list[PlaceholderFeaturesInfo]],
|
|
mm_item_counts: Mapping[str, int],
|
|
use_audio_in_video: bool = False,
|
|
) -> None:
|
|
if use_audio_in_video:
|
|
mm_item_counts = copy(mm_item_counts)
|
|
if "video" in mm_item_counts:
|
|
assert "audio" in mm_item_counts
|
|
mm_item_counts["audio"] -= mm_item_counts["video"]
|
|
super()._validate_mm_placeholders(mm_placeholders, mm_item_counts)
|
|
|
|
|
|
class Qwen2_5OmniConditionalGenerationMixin:
|
|
def _parse_and_validate_audio_input(
|
|
self, **kwargs: object
|
|
) -> Qwen2_5OmniAudioFeatureInputs | None:
|
|
input_audio_features = kwargs.pop("input_audio_features", None)
|
|
audio_feature_lengths = kwargs.pop("audio_feature_lengths", None)
|
|
feature_attention_mask = kwargs.pop("feature_attention_mask", None)
|
|
if input_audio_features is None:
|
|
return None
|
|
|
|
return Qwen2_5OmniAudioFeatureInputs(
|
|
type="audio_features",
|
|
input_features=input_audio_features,
|
|
audio_feature_lengths=audio_feature_lengths,
|
|
feature_attention_mask=feature_attention_mask,
|
|
)
|
|
|
|
def _parse_and_validate_image_input(
|
|
self,
|
|
**kwargs: dict[str, Any],
|
|
) -> Qwen2_5_VLImageInputs | None:
|
|
pixel_values = kwargs.pop("pixel_values", None)
|
|
image_embeds = kwargs.pop("image_embeds", None)
|
|
image_grid_thw = kwargs.pop("image_grid_thw", None)
|
|
|
|
if pixel_values is None and image_embeds is None:
|
|
return None
|
|
|
|
if pixel_values is not None:
|
|
return Qwen2_5_VLImagePixelInputs(
|
|
type="pixel_values",
|
|
pixel_values=pixel_values,
|
|
image_grid_thw=image_grid_thw,
|
|
)
|
|
|
|
if image_embeds is not None:
|
|
return Qwen2_5_VLImageEmbeddingInputs(
|
|
type="image_embeds",
|
|
image_embeds=image_embeds,
|
|
image_grid_thw=image_grid_thw,
|
|
)
|
|
|
|
def _parse_and_validate_video_input(
|
|
self,
|
|
**kwargs: dict[str, Any],
|
|
) -> Qwen2_5_VLVideoInputs | None:
|
|
pixel_values_videos = kwargs.pop("pixel_values_videos", None)
|
|
video_embeds = kwargs.pop("video_embeds", None)
|
|
video_grid_thw = kwargs.pop("video_grid_thw", None)
|
|
|
|
if pixel_values_videos is None and video_embeds is None:
|
|
return None
|
|
|
|
if pixel_values_videos is not None:
|
|
return Qwen2_5_VLVideoPixelInputs(
|
|
type="pixel_values_videos",
|
|
pixel_values_videos=pixel_values_videos,
|
|
video_grid_thw=video_grid_thw,
|
|
)
|
|
|
|
if video_embeds is not None:
|
|
if not isinstance(video_embeds, torch.Tensor):
|
|
raise ValueError(
|
|
"Incorrect type of video embeddings. "
|
|
f"Got type: {type(video_embeds)}"
|
|
)
|
|
return Qwen2_5_VLVideoEmbeddingInputs(
|
|
type="video_embeds",
|
|
video_embeds=video_embeds,
|
|
video_grid_thw=video_grid_thw,
|
|
)
|
|
|
|
def _process_audio_input(
|
|
self,
|
|
audio_input: Qwen2_5OmniAudioFeatureInputs,
|
|
audio_hashes: list[str] | None = None,
|
|
cached_audio_features: torch.Tensor | None = None,
|
|
) -> torch.Tensor:
|
|
input_features = audio_input["input_features"]
|
|
audio_feature_lengths = audio_input["audio_feature_lengths"]
|
|
|
|
if audio_feature_lengths.shape[0] == 1:
|
|
audio_feature_lengths = audio_feature_lengths.squeeze(0)
|
|
elif audio_feature_lengths.shape[1] == 1:
|
|
audio_feature_lengths = audio_feature_lengths.squeeze(1)
|
|
else:
|
|
raise AssertionError(audio_feature_lengths.shape)
|
|
|
|
audio_feat_lengths, audio_output_lengths = (
|
|
self.audio_tower._get_feat_extract_output_lengths(audio_feature_lengths)
|
|
)
|
|
|
|
audio_outputs = self.audio_tower(
|
|
input_features.to(self.audio_tower.dtype),
|
|
feature_lens=audio_feature_lengths,
|
|
aftercnn_lens=audio_feat_lengths,
|
|
)
|
|
return audio_outputs.last_hidden_state.split(audio_output_lengths.tolist())
|
|
|
|
def _process_image_input(
|
|
self, image_input: Qwen2_5_VLImageInputs
|
|
) -> tuple[torch.Tensor, ...]:
|
|
if image_input["type"] == "image_embeds":
|
|
return image_input["image_embeds"].type(self.visual.dtype)
|
|
|
|
grid_thw = image_input["image_grid_thw"]
|
|
assert grid_thw.ndim == 2
|
|
|
|
pixel_values = image_input["pixel_values"].type(self.visual.dtype)
|
|
image_embeds = self.visual(pixel_values, grid_thw=grid_thw)
|
|
# Split concatenated embeddings for each image item.
|
|
merge_size = self.visual.spatial_merge_size
|
|
sizes = grid_thw.prod(-1) // merge_size // merge_size
|
|
|
|
return image_embeds.split(sizes.tolist())
|
|
|
|
def _process_video_input(
|
|
self,
|
|
video_input: Qwen2_5_VLVideoInputs,
|
|
video_hashes: list[str] = None,
|
|
cached_video_embeds: torch.Tensor = None,
|
|
) -> torch.Tensor:
|
|
if video_input["type"] == "video_embeds":
|
|
return video_input["video_embeds"].type(self.visual.dtype)
|
|
|
|
grid_thw = video_input["video_grid_thw"]
|
|
assert grid_thw.ndim == 2
|
|
|
|
pixel_values_videos = video_input["pixel_values_videos"].type(self.visual.dtype)
|
|
video_embeds = self.visual(pixel_values_videos, grid_thw=grid_thw)
|
|
# Split concatenated embeddings for each video item.
|
|
merge_size = self.visual.spatial_merge_size
|
|
sizes = grid_thw.prod(-1) // merge_size // merge_size
|
|
|
|
return video_embeds.split(sizes.tolist())
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
Qwen2_5OmniThinkerMultiModalProcessor,
|
|
info=Qwen2_5OmniThinkerProcessingInfo,
|
|
dummy_inputs=Qwen2_5OmniThinkerDummyInputsBuilder,
|
|
)
|
|
class Qwen2_5OmniThinkerForConditionalGeneration(
|
|
nn.Module,
|
|
SupportsMultiModal,
|
|
SupportsPP,
|
|
SupportsLoRA,
|
|
SupportsMRoPE,
|
|
Qwen2_5OmniConditionalGenerationMixin,
|
|
):
|
|
merge_by_field_config = True
|
|
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_prefix={
|
|
"thinker.lm_head.": "language_model.lm_head.",
|
|
"thinker.model.": "language_model.model.",
|
|
"thinker.": "",
|
|
}
|
|
)
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
],
|
|
"attn.qkv": [
|
|
"attn.q",
|
|
"attn.k",
|
|
"attn.v",
|
|
],
|
|
"gate_up_proj": [
|
|
"gate_proj",
|
|
"up_proj",
|
|
],
|
|
}
|
|
|
|
@classmethod
|
|
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
|
|
if modality.startswith("image"):
|
|
return "<|vision_start|><|IMAGE|><|vision_end|>"
|
|
if modality.startswith("video"):
|
|
return "<|vision_start|><|VIDEO|><|vision_end|>"
|
|
if modality.startswith("audio"):
|
|
return f"Audio {i}: <|audio_bos|><|AUDIO|><|audio_eos|>"
|
|
|
|
raise ValueError("Only image, video or audio modality is supported")
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
thinker_config: Qwen2_5OmniThinkerConfig = (
|
|
vllm_config.model_config.hf_config.thinker_config
|
|
)
|
|
quant_config = vllm_config.quant_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
self.config = thinker_config
|
|
self.multimodal_config = multimodal_config
|
|
|
|
# force "use_flash_attention_2=True" to audio tower to align
|
|
# the results.
|
|
if flash_attn is not None:
|
|
audio_config = thinker_config.audio_config
|
|
audio_config._attn_implementation_autoset = True
|
|
audio_config._attn_implementation = "flash_attention_2"
|
|
else:
|
|
logger.warning(
|
|
"flash_attn is not available, the model may not yield the "
|
|
"exactly same result as the transformers implementation "
|
|
"in the audio tower part."
|
|
)
|
|
|
|
if multimodal_config.get_limit_per_prompt("audio"):
|
|
self.audio_tower = Qwen2_5OmniAudioEncoder(thinker_config.audio_config)
|
|
else:
|
|
self.audio_tower = None
|
|
|
|
if multimodal_config.get_limit_per_prompt(
|
|
"image"
|
|
) or multimodal_config.get_limit_per_prompt("video"):
|
|
self.visual = Qwen2_5_VisionTransformer(
|
|
vision_config=thinker_config.vision_config,
|
|
norm_eps=getattr(thinker_config.text_config, "rms_norm_eps", 1e-6),
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "visual"),
|
|
)
|
|
else:
|
|
self.visual = None
|
|
|
|
self.quant_config = quant_config
|
|
self.language_model = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
prefix=maybe_prefix(prefix, "language_model"),
|
|
hf_config=thinker_config.text_config,
|
|
architectures=["Qwen2ForCausalLM"],
|
|
)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.language_model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
|
|
mm_input_by_modality = {}
|
|
|
|
# Preserve the order of modalities if there are multiple of them
|
|
# from the order of kwargs.
|
|
for input_key in kwargs:
|
|
if (
|
|
input_key in ("pixel_values", "image_embeds")
|
|
and "image" not in mm_input_by_modality
|
|
):
|
|
mm_input_by_modality["image"] = self._parse_and_validate_image_input(
|
|
**kwargs
|
|
)
|
|
if (
|
|
input_key in ("pixel_values_videos", "video_embeds")
|
|
and "video" not in mm_input_by_modality
|
|
):
|
|
mm_input_by_modality["video"] = self._parse_and_validate_video_input(
|
|
**kwargs
|
|
)
|
|
if (
|
|
input_key in ("input_audio_features")
|
|
and "audio" not in mm_input_by_modality
|
|
):
|
|
mm_input_by_modality["audio"] = self._parse_and_validate_audio_input(
|
|
**kwargs
|
|
)
|
|
return mm_input_by_modality
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|
|
|
|
def get_mrope_input_positions(
|
|
self,
|
|
input_tokens: list[int],
|
|
hf_config: PretrainedConfig,
|
|
image_grid_thw: list[list[int]] | torch.Tensor,
|
|
video_grid_thw: list[list[int]] | torch.Tensor,
|
|
second_per_grid_ts: list[float] | None = None,
|
|
context_len: int = 0,
|
|
seq_len: int | None = None,
|
|
audio_feature_lengths: torch.Tensor | None = None,
|
|
use_audio_in_video: bool = False,
|
|
) -> tuple[torch.Tensor, int]:
|
|
"""Get mrope input positions and delta value (Qwen2.5-Omni version).
|
|
|
|
Differences from MRotaryEmbedding:
|
|
1. Add audio support (and related `audio_feature_lengths`).
|
|
2. Add `use_audio_in_video` option to read audio from video inputs.
|
|
In this case, audio and vision position ids will be split into
|
|
chunks and interleaved.
|
|
|
|
Example:
|
|
|
|
(V_i are vision position ids, A_i are audio position ids)
|
|
|
|
|V_1 ... V_n|A_1 ... A_n|V_n+1 ... V_2n|A_n+1 ... A_2n|...
|
|
|vision chunk 1|audio chunk 1|vision chunk 2|audio chunk 2 |...
|
|
"""
|
|
|
|
# TODO(fyabc): refactor and share more code with
|
|
# _vl_get_input_positions_tensor.
|
|
|
|
thinker_config = hf_config.thinker_config
|
|
audio_token_id = thinker_config.audio_token_index
|
|
image_token_id = thinker_config.image_token_index
|
|
video_token_id = thinker_config.video_token_index
|
|
audio_start_token_id = thinker_config.audio_start_token_id
|
|
audio_end_token_id = thinker_config.audio_end_token_id
|
|
vision_start_token_id = thinker_config.vision_start_token_id
|
|
vision_end_token_id = thinker_config.vision_end_token_id
|
|
seconds_per_chunk = thinker_config.seconds_per_chunk
|
|
spatial_merge_size = thinker_config.vision_config.spatial_merge_size
|
|
tokens_per_second = getattr(
|
|
thinker_config.vision_config, "tokens_per_second", 25
|
|
)
|
|
|
|
if isinstance(image_grid_thw, list):
|
|
image_grid_thw = torch.tensor(image_grid_thw)
|
|
if isinstance(video_grid_thw, list):
|
|
video_grid_thw = torch.tensor(video_grid_thw)
|
|
|
|
src_item = input_tokens
|
|
audio_seqlens = audio_feature_lengths
|
|
if not second_per_grid_ts:
|
|
second_per_grid_ts = [1] * video_grid_thw.shape[0]
|
|
audio_idx = 0
|
|
video_idx = 0
|
|
image_idx = 0
|
|
new_src_item: list[int] = []
|
|
llm_pos_ids_list: list[torch.Tensor] = []
|
|
|
|
idx = 0
|
|
while idx < len(src_item):
|
|
new_src_item_len = len(new_src_item)
|
|
start_idx = (
|
|
llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
|
)
|
|
if src_item[idx] not in [audio_token_id, video_token_id, image_token_id]:
|
|
if use_audio_in_video and idx > 0:
|
|
if (
|
|
src_item[idx] == vision_end_token_id
|
|
and src_item[idx - 1] == audio_end_token_id
|
|
):
|
|
# processing the <|audio_eos|> before <|vision_eos|>
|
|
start_idx -= 1
|
|
elif (
|
|
src_item[idx] == audio_start_token_id
|
|
and src_item[idx - 1] == vision_start_token_id
|
|
):
|
|
# processing the <|audio_bos|> after <|vision_eos|>
|
|
start_idx -= 1
|
|
new_src_item.append(src_item[idx])
|
|
llm_pos_ids = torch.tensor([start_idx], dtype=torch.long).expand(3, -1)
|
|
llm_pos_ids_list.append(llm_pos_ids)
|
|
elif src_item[idx] == audio_token_id:
|
|
assert audio_seqlens is not None
|
|
audio_seqlen = audio_seqlens[audio_idx]
|
|
place_num = ((audio_seqlen - 1) // 2 + 1 - 2) // 2 + 1
|
|
new_src_item.extend([audio_token_id] * place_num)
|
|
llm_pos_ids = torch.arange(place_num).expand(3, -1) + start_idx
|
|
llm_pos_ids_list.append(llm_pos_ids)
|
|
audio_idx += 1
|
|
elif src_item[idx] == image_token_id:
|
|
grid_t = image_grid_thw[image_idx][0]
|
|
grid_hs = image_grid_thw[:, 1]
|
|
grid_ws = image_grid_thw[:, 2]
|
|
t_index = (torch.arange(grid_t) * 1 * tokens_per_second).long()
|
|
llm_pos_ids = get_llm_pos_ids_for_vision(
|
|
start_idx, image_idx, spatial_merge_size, t_index, grid_hs, grid_ws
|
|
)
|
|
llm_pos_ids_list.append(llm_pos_ids)
|
|
vision_seqlen = image_grid_thw[image_idx].prod() // (
|
|
spatial_merge_size**2
|
|
)
|
|
new_src_item.extend([image_token_id] * vision_seqlen)
|
|
image_idx += 1
|
|
elif src_item[idx] == video_token_id and not use_audio_in_video:
|
|
grid_t = video_grid_thw[video_idx][0]
|
|
grid_hs = video_grid_thw[:, 1]
|
|
grid_ws = video_grid_thw[:, 2]
|
|
t_index = (
|
|
torch.arange(grid_t)
|
|
* second_per_grid_ts[video_idx]
|
|
* tokens_per_second
|
|
).long()
|
|
llm_pos_ids = get_llm_pos_ids_for_vision(
|
|
start_idx, video_idx, spatial_merge_size, t_index, grid_hs, grid_ws
|
|
)
|
|
llm_pos_ids_list.append(llm_pos_ids)
|
|
vision_seqlen = video_grid_thw[video_idx].prod() // (
|
|
spatial_merge_size**2
|
|
)
|
|
new_src_item.extend([video_token_id] * vision_seqlen)
|
|
video_idx += 1
|
|
else:
|
|
# read audio from video
|
|
assert audio_seqlens is not None
|
|
audio_seqlen = audio_seqlens[audio_idx]
|
|
vision_seqlen = video_grid_thw[video_idx].prod() // (
|
|
spatial_merge_size**2
|
|
)
|
|
grid_t = video_grid_thw[video_idx][0]
|
|
grid_h = video_grid_thw[video_idx][1]
|
|
grid_w = video_grid_thw[video_idx][2]
|
|
grid_hs = video_grid_thw[:, 1]
|
|
grid_ws = video_grid_thw[:, 2]
|
|
t_ntoken_per_chunk = int(tokens_per_second * seconds_per_chunk)
|
|
t_index = (
|
|
torch.arange(grid_t)
|
|
* second_per_grid_ts[video_idx]
|
|
* tokens_per_second
|
|
).long()
|
|
t_index_split_chunk = split_list_into_ranges(
|
|
t_index, t_ntoken_per_chunk
|
|
)
|
|
place_num = (((audio_seqlen - 1) // 2 + 1 - 2) // 2 + 1) + 2
|
|
pure_audio_len = place_num - 2
|
|
added_audio_len = 0
|
|
audio_llm_pos_ids_list: list[torch.Tensor] = []
|
|
for t_chunk in t_index_split_chunk:
|
|
vision_ntoken_per_chunk = (
|
|
len(t_chunk) * grid_h * grid_w // (spatial_merge_size**2)
|
|
)
|
|
new_src_item.extend([video_token_id] * vision_ntoken_per_chunk)
|
|
vision_llm_pos_ids_list = get_llm_pos_ids_for_vision(
|
|
start_idx,
|
|
video_idx,
|
|
spatial_merge_size,
|
|
t_chunk,
|
|
grid_hs,
|
|
grid_ws,
|
|
).split(1, dim=1)
|
|
llm_pos_ids_list.extend(vision_llm_pos_ids_list)
|
|
new_src_item.extend(
|
|
min(t_ntoken_per_chunk, pure_audio_len - added_audio_len)
|
|
* [audio_token_id]
|
|
)
|
|
audio_start_idx = (
|
|
start_idx
|
|
if len(audio_llm_pos_ids_list) == 0
|
|
else audio_llm_pos_ids_list[-1][0].item() + 1
|
|
)
|
|
if min(t_ntoken_per_chunk, pure_audio_len - added_audio_len) > 0:
|
|
audio_llm_pos_ids_list = (
|
|
torch.arange(
|
|
min(
|
|
t_ntoken_per_chunk, pure_audio_len - added_audio_len
|
|
)
|
|
).expand(3, -1)
|
|
+ audio_start_idx
|
|
).split(1, dim=1)
|
|
else:
|
|
audio_llm_pos_ids_list = []
|
|
added_audio_len += min(
|
|
t_ntoken_per_chunk, pure_audio_len - added_audio_len
|
|
)
|
|
llm_pos_ids_list.extend(audio_llm_pos_ids_list)
|
|
if added_audio_len < pure_audio_len:
|
|
new_src_item.extend(
|
|
(pure_audio_len - added_audio_len) * [audio_token_id]
|
|
)
|
|
audio_llm_pos_ids_list = (
|
|
torch.arange(pure_audio_len - added_audio_len).expand(3, -1)
|
|
+ llm_pos_ids_list[-1].max()
|
|
+ 1
|
|
).split(1, dim=1)
|
|
llm_pos_ids_list.extend(audio_llm_pos_ids_list)
|
|
audio_idx += 1
|
|
video_idx += 1
|
|
# move to the next token
|
|
idx += len(new_src_item) - new_src_item_len
|
|
|
|
llm_positions = torch.cat(llm_pos_ids_list, dim=1)
|
|
mrope_position_delta = (
|
|
torch.cat(llm_pos_ids_list, dim=1).max() + 1 - len(src_item)
|
|
)
|
|
llm_positions = llm_positions[:, context_len:seq_len]
|
|
|
|
return llm_positions, mrope_position_delta
|
|
|
|
def get_multimodal_embeddings(self, **kwargs: object) -> MultiModalEmbeddings:
|
|
mm_input_by_modality = self._parse_and_validate_multimodal_inputs(**kwargs)
|
|
if not mm_input_by_modality:
|
|
return []
|
|
|
|
# The result multimodal_embeddings is tuple of tensors, with each
|
|
# tensor corresponding to a multimodal data item (image or video).
|
|
multimodal_embeddings: tuple[torch.Tensor, ...] = ()
|
|
|
|
# NOTE: It is important to iterate over the keys in this dictionary
|
|
# to preserve the order of the modalities.
|
|
for modality in mm_input_by_modality:
|
|
multimodal_input = mm_input_by_modality[modality]
|
|
if modality == "image":
|
|
image_embeddings = self._process_image_input(multimodal_input)
|
|
multimodal_embeddings += tuple(image_embeddings)
|
|
if modality == "video":
|
|
video_embeddings = self._process_video_input(multimodal_input)
|
|
multimodal_embeddings += tuple(video_embeddings)
|
|
if modality == "audio":
|
|
audio_embeddings = self._process_audio_input(multimodal_input)
|
|
multimodal_embeddings += tuple(audio_embeddings)
|
|
return multimodal_embeddings
|
|
|
|
# TODO (ywang96): support overlapping modality embeddings so that
|
|
# `use_audio_in_video` will work on V1.
|
|
def get_input_embeddings(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
multimodal_embeddings: MultiModalEmbeddings | None = None,
|
|
*,
|
|
is_multimodal: torch.Tensor | None = None,
|
|
handle_oov_mm_token: bool = False,
|
|
) -> torch.Tensor:
|
|
# This is to satisfy the type checker for each overload
|
|
if multimodal_embeddings is None or is_multimodal is None:
|
|
return super().get_input_embeddings(input_ids)
|
|
|
|
return super().get_input_embeddings(
|
|
input_ids,
|
|
multimodal_embeddings=multimodal_embeddings,
|
|
is_multimodal=is_multimodal,
|
|
handle_oov_mm_token=handle_oov_mm_token,
|
|
)
|
|
|
|
def get_multimodal_embeddings_v0(self, **kwargs: object) -> NestedTensors | None:
|
|
audio_input = self._parse_and_validate_audio_input(**kwargs)
|
|
image_input = self._parse_and_validate_image_input(**kwargs)
|
|
video_input = self._parse_and_validate_video_input(**kwargs)
|
|
|
|
if audio_input is None and image_input is None and video_input is None:
|
|
return None
|
|
|
|
multimodal_embeddings: list[tuple[NestedTensors, str]] = []
|
|
|
|
if audio_input is not None:
|
|
audio_embeds = self._process_audio_input(audio_input)
|
|
multimodal_embeddings.append((audio_embeds, "audio"))
|
|
if image_input is not None:
|
|
image_embeds = self._process_image_input(image_input)
|
|
multimodal_embeddings.append((image_embeds, "image"))
|
|
if video_input is not None:
|
|
video_embeds = self._process_video_input(video_input)
|
|
multimodal_embeddings.append((video_embeds, "video"))
|
|
return multimodal_embeddings
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs: object,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
hidden_states = self.language_model.model(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds=inputs_embeds
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
return self.language_model.compute_logits(hidden_states)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
skip_prefixes = ["talker.", "token2wav."]
|
|
if self.audio_tower is None:
|
|
skip_prefixes.extend(["audio_tower."])
|
|
if self.visual is None:
|
|
skip_prefixes.extend(["visual."])
|
|
|
|
loader = AutoWeightsLoader(
|
|
self,
|
|
skip_prefixes=skip_prefixes,
|
|
)
|
|
loaded_weights = loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|
|
|
|
return loaded_weights
|
|
|
|
def get_mm_mapping(self) -> MultiModelKeys:
|
|
"""
|
|
Get the module prefix in multimodal models
|
|
"""
|
|
return MultiModelKeys.from_string_field(
|
|
language_model="language_model",
|
|
connector="merger.",
|
|
tower_model=["visual.", "audio_tower."],
|
|
)
|