vllm/tests/models/language/pooling/embed_utils.py
Cyrus Leung 86ae693f20
[Deprecation][2/N] Replace --task with --runner and --convert (#21470)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-27 19:42:40 -07:00

70 lines
2.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Sequence
from typing import Optional
import pytest
from tests.conftest import HfRunner
from tests.models.utils import (EmbedModelInfo, check_embeddings_close,
matryoshka_fy)
def run_embedding_correctness_test(
hf_model: "HfRunner",
inputs: list[str],
vllm_outputs: Sequence[list[float]],
dimensions: Optional[int] = None,
):
hf_outputs = hf_model.encode(inputs)
if dimensions:
hf_outputs = matryoshka_fy(hf_outputs, dimensions)
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
tol=1e-2,
)
def correctness_test_embed_models(hf_runner,
vllm_runner,
model_info: EmbedModelInfo,
example_prompts,
vllm_extra_kwargs=None,
hf_model_callback=None):
if not model_info.enable_test:
# A model family has many models with the same architecture,
# and we don't need to test each one.
pytest.skip("Skipping test.")
# The example_prompts has ending "\n", for example:
# "Write a short story about a robot that dreams for the first time.\n"
# sentence_transformers will strip the input texts, see:
# https://github.com/UKPLab/sentence-transformers/blob/v3.1.1/sentence_transformers/models/Transformer.py#L159
# This makes the input_ids different between hf_model and vllm_model.
# So we need to strip the input texts to avoid test failing.
example_prompts = [str(s).strip() for s in example_prompts]
vllm_extra_kwargs = vllm_extra_kwargs or {}
vllm_extra_kwargs["dtype"] = model_info.dtype
with vllm_runner(model_info.name,
runner="pooling",
max_model_len=None,
**vllm_extra_kwargs) as vllm_model:
vllm_outputs = vllm_model.embed(example_prompts)
with hf_runner(
model_info.name,
dtype="float32",
is_sentence_transformer=True,
) as hf_model:
if hf_model_callback is not None:
hf_model_callback(hf_model)
run_embedding_correctness_test(hf_model, example_prompts, vllm_outputs)