mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 02:55:40 +08:00
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk> Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com> Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
70 lines
2.4 KiB
Python
70 lines
2.4 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
from collections.abc import Sequence
|
|
from typing import Optional
|
|
|
|
import pytest
|
|
|
|
from tests.conftest import HfRunner
|
|
from tests.models.utils import (EmbedModelInfo, check_embeddings_close,
|
|
matryoshka_fy)
|
|
|
|
|
|
def run_embedding_correctness_test(
|
|
hf_model: "HfRunner",
|
|
inputs: list[str],
|
|
vllm_outputs: Sequence[list[float]],
|
|
dimensions: Optional[int] = None,
|
|
):
|
|
hf_outputs = hf_model.encode(inputs)
|
|
if dimensions:
|
|
hf_outputs = matryoshka_fy(hf_outputs, dimensions)
|
|
|
|
check_embeddings_close(
|
|
embeddings_0_lst=hf_outputs,
|
|
embeddings_1_lst=vllm_outputs,
|
|
name_0="hf",
|
|
name_1="vllm",
|
|
tol=1e-2,
|
|
)
|
|
|
|
|
|
def correctness_test_embed_models(hf_runner,
|
|
vllm_runner,
|
|
model_info: EmbedModelInfo,
|
|
example_prompts,
|
|
vllm_extra_kwargs=None,
|
|
hf_model_callback=None):
|
|
if not model_info.enable_test:
|
|
# A model family has many models with the same architecture,
|
|
# and we don't need to test each one.
|
|
pytest.skip("Skipping test.")
|
|
|
|
# The example_prompts has ending "\n", for example:
|
|
# "Write a short story about a robot that dreams for the first time.\n"
|
|
# sentence_transformers will strip the input texts, see:
|
|
# https://github.com/UKPLab/sentence-transformers/blob/v3.1.1/sentence_transformers/models/Transformer.py#L159
|
|
# This makes the input_ids different between hf_model and vllm_model.
|
|
# So we need to strip the input texts to avoid test failing.
|
|
example_prompts = [str(s).strip() for s in example_prompts]
|
|
|
|
vllm_extra_kwargs = vllm_extra_kwargs or {}
|
|
vllm_extra_kwargs["dtype"] = model_info.dtype
|
|
|
|
with vllm_runner(model_info.name,
|
|
runner="pooling",
|
|
max_model_len=None,
|
|
**vllm_extra_kwargs) as vllm_model:
|
|
vllm_outputs = vllm_model.embed(example_prompts)
|
|
|
|
with hf_runner(
|
|
model_info.name,
|
|
dtype="float32",
|
|
is_sentence_transformer=True,
|
|
) as hf_model:
|
|
|
|
if hf_model_callback is not None:
|
|
hf_model_callback(hf_model)
|
|
|
|
run_embedding_correctness_test(hf_model, example_prompts, vllm_outputs)
|