vllm/tests/models/language/pooling/test_embedding.py
2025-08-06 23:05:03 -07:00

103 lines
3.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Optional
import pytest
from vllm.config import PoolerConfig
from vllm.platforms import current_platform
from ...utils import check_embeddings_close, check_transformers_version
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
@pytest.mark.parametrize(
"model",
[
# Be careful of the order of models, decoder-only models should be
# placed before encoder-only models, otherwise `Qwen2.5-0.5B-Instruct`
# case won't pass because gte-Qwen2-1.5B-instruct will cache custom
# model code with bidirectional attention.
# [Decoder-only]
pytest.param("BAAI/bge-multilingual-gemma2",
marks=[pytest.mark.core_model]),
pytest.param(
"intfloat/e5-mistral-7b-instruct",
# CPU v1 doesn't support sliding window
marks=[pytest.mark.core_model]),
# the qwen models interfere with each other (see PR
# https://github.com/vllm-project/vllm/pull/18720).
# To avoid this problem, for now we skip v0 since it will be
# deprecated anyway.
pytest.param("ssmits/Qwen2-7B-Instruct-embed-base",
marks=[pytest.mark.skip_v0, pytest.mark.cpu_model]),
# [Encoder-only]
pytest.param("BAAI/bge-base-en-v1.5", marks=[pytest.mark.core_model]),
pytest.param("sentence-transformers/all-MiniLM-L12-v2"),
pytest.param("intfloat/multilingual-e5-small"),
pytest.param("Alibaba-NLP/gte-Qwen2-1.5B-instruct",
marks=[pytest.mark.skip_v1]),
# [Cross-Encoder]
pytest.param("sentence-transformers/stsb-roberta-base-v2",
marks=[pytest.mark.skip_v1]),
],
)
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model,
monkeypatch,
) -> None:
if model == "Alibaba-NLP/gte-Qwen2-1.5B-instruct":
check_transformers_version(model, max_transformers_version="4.53.2")
if model == "BAAI/bge-multilingual-gemma2" and current_platform.is_rocm():
# ROCm Triton FA does not currently support sliding window attention
# switch to use ROCm CK FA backend
monkeypatch.setenv("VLLM_USE_TRITON_FLASH_ATTN", "False")
vllm_extra_kwargs = {}
if model == "ssmits/Qwen2-7B-Instruct-embed-base":
vllm_extra_kwargs["override_pooler_config"] = \
PoolerConfig(pooling_type="MEAN", normalize=False)
max_model_len: Optional[int] = 512
if model in [
"sentence-transformers/all-MiniLM-L12-v2",
"sentence-transformers/stsb-roberta-base-v2"
]:
max_model_len = None
# The example_prompts has ending "\n", for example:
# "Write a short story about a robot that dreams for the first time.\n"
# sentence_transformers will strip the input texts, see:
# https://github.com/UKPLab/sentence-transformers/blob/v3.1.1/sentence_transformers/models/Transformer.py#L159
# This makes the input_ids different between hf_model and vllm_model.
# So we need to strip the input texts to avoid test failing.
example_prompts = [str(s).strip() for s in example_prompts]
with hf_runner(model, is_sentence_transformer=True) as hf_model:
hf_outputs = hf_model.encode(example_prompts)
with vllm_runner(model,
runner="pooling",
max_model_len=max_model_len,
**vllm_extra_kwargs) as vllm_model:
vllm_outputs = vllm_model.embed(example_prompts)
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
tol=1e-2,
)