vllm/tests/benchmarks/test_random_dataset.py
Harry Mellor 8fcaaf6a16
Update Optional[x] -> x | None and Union[x, y] to x | y (#26633)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-12 09:51:31 -07:00

362 lines
11 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import random
from typing import Any, NamedTuple, cast
import numpy as np
import pytest
from transformers import AutoTokenizer, PreTrainedTokenizerBase
from vllm.benchmarks.datasets import (
RandomDataset,
RandomMultiModalDataset,
SampleRequest,
)
@pytest.fixture(scope="session")
def hf_tokenizer() -> PreTrainedTokenizerBase:
# Use a small, commonly available tokenizer
return AutoTokenizer.from_pretrained("gpt2")
class Params(NamedTuple):
num_requests: int
prefix_len: int
range_ratio: float
input_len: int
output_len: int
@pytest.fixture(scope="session")
def random_dataset_params() -> Params:
return Params(
num_requests=16, prefix_len=7, range_ratio=0.3, input_len=50, output_len=20
)
def _fingerprint_sample(req: SampleRequest) -> tuple[str, int, int]:
"""Project a SampleRequest into a comparable tuple."""
return (req.prompt, req.prompt_len, req.expected_output_len)
def _collect_samples(
dataset: RandomDataset,
tokenizer: PreTrainedTokenizerBase,
num_requests: int = 16,
prefix_len: int = 7,
range_ratio: float = 0.3,
input_len: int = 50,
output_len: int = 20,
) -> list[tuple[str, int, int]]:
samples = dataset.sample(
tokenizer=tokenizer,
num_requests=num_requests,
prefix_len=prefix_len,
range_ratio=range_ratio,
input_len=input_len,
output_len=output_len,
)
return [_fingerprint_sample(s) for s in samples]
@pytest.mark.benchmark
def test_random_dataset_same_seed(
hf_tokenizer: PreTrainedTokenizerBase, random_dataset_params: Params
) -> None:
"""Same seed should yield identical outputs, even if global RNGs change.
This guards against accidental reliance on Python's random or np.random
in RandomDataset after moving to numpy.default_rng.
"""
p = random_dataset_params
common_seed = 123
dataset_a = RandomDataset(random_seed=common_seed)
dataset_b = RandomDataset(random_seed=common_seed)
a = _collect_samples(
dataset_a,
hf_tokenizer,
num_requests=p.num_requests,
prefix_len=p.prefix_len,
range_ratio=p.range_ratio,
input_len=p.input_len,
output_len=p.output_len,
)
# Perturb global RNG state to ensure isolation
random.seed(999)
_ = [random.random() for _ in range(100)]
np.random.seed(888)
_ = [np.random.random() for _ in range(100)]
b = _collect_samples(
dataset_b,
hf_tokenizer,
num_requests=p.num_requests,
prefix_len=p.prefix_len,
range_ratio=p.range_ratio,
input_len=p.input_len,
output_len=p.output_len,
)
assert a == b
@pytest.mark.benchmark
def test_random_dataset_different_seeds(
hf_tokenizer: PreTrainedTokenizerBase, random_dataset_params: Params
) -> None:
"""Different seeds should change outputs with overwhelming likelihood."""
p = random_dataset_params
seed_a = 0
dataset_a = RandomDataset(random_seed=seed_a)
a = _collect_samples(
dataset_a,
hf_tokenizer,
num_requests=p.num_requests,
prefix_len=p.prefix_len,
range_ratio=p.range_ratio,
input_len=p.input_len,
output_len=p.output_len,
)
seed_b = 999
dataset_b = RandomDataset(random_seed=seed_b)
# Perturb global RNG with same seed as dataset_a to ensure isolation
random.seed(seed_a)
np.random.seed(seed_a)
b = _collect_samples(
dataset_b,
hf_tokenizer,
num_requests=p.num_requests,
prefix_len=p.prefix_len,
range_ratio=p.range_ratio,
input_len=p.input_len,
output_len=p.output_len,
)
assert a != b
# -----------------------------
# RandomMultiModalDataset tests
# -----------------------------
def _mm_fingerprint_sample(
req: SampleRequest,
) -> tuple[str, int, int, int, list[str]]:
"""Create a compact fingerprint for multimodal samples.
Includes:
- prompt string
- prompt_len
- expected_output_len
- count of multimodal items
- per-item type and URL prefix (e.g., 'data:image/jpeg;base64,')
"""
items = req.multi_modal_data or []
item_prefixes: list[str] = []
for it in items:
if isinstance(it, dict) and it.get("type") == "image_url":
url = it.get("image_url", {}).get("url", "")
# Only keep a short identifying prefix to avoid huge strings
item_prefixes.append(f"image:{url[:22]}")
elif isinstance(it, dict) and it.get("type") == "video_url":
url = it.get("video_url", {}).get("url", "")
item_prefixes.append(f"video:{url[:22]}")
else:
item_prefixes.append("unknown:")
return (
req.prompt,
req.prompt_len,
req.expected_output_len,
len(items),
item_prefixes,
)
def _collect_mm_samples(
dataset: RandomMultiModalDataset,
tokenizer: PreTrainedTokenizerBase,
*,
num_requests: int = 8,
prefix_len: int = 3,
range_ratio: float = 0.0,
input_len: int = 20,
output_len: int = 5,
base_items_per_request: int = 2,
num_mm_items_range_ratio: float = 0.0,
limit_mm_per_prompt: dict[str, int] | None = None,
bucket_config: dict[tuple[int, int, int], float] | None = None,
enable_multimodal_chat: bool = False,
) -> list[SampleRequest]:
if limit_mm_per_prompt is None:
limit_mm_per_prompt = {"image": 5, "video": 0}
if bucket_config is None:
bucket_config = {(32, 32, 1): 0.5, (52, 64, 1): 0.5}
return dataset.sample(
tokenizer=tokenizer,
num_requests=num_requests,
prefix_len=prefix_len,
range_ratio=range_ratio,
input_len=input_len,
output_len=output_len,
base_items_per_request=base_items_per_request,
num_mm_items_range_ratio=num_mm_items_range_ratio,
limit_mm_per_prompt=limit_mm_per_prompt,
bucket_config=bucket_config,
enable_multimodal_chat=enable_multimodal_chat,
)
@pytest.mark.benchmark
def test_random_mm_same_seed(hf_tokenizer: PreTrainedTokenizerBase) -> None:
seed = 42
ds_a = RandomMultiModalDataset(random_seed=seed)
ds_b = RandomMultiModalDataset(random_seed=seed)
a = _collect_mm_samples(ds_a, hf_tokenizer)
b = _collect_mm_samples(ds_b, hf_tokenizer)
fa = [_mm_fingerprint_sample(s) for s in a]
fb = [_mm_fingerprint_sample(s) for s in b]
assert fa == fb
@pytest.mark.benchmark
def test_random_mm_different_seeds(
hf_tokenizer: PreTrainedTokenizerBase,
) -> None:
ds_a = RandomMultiModalDataset(random_seed=0)
ds_b = RandomMultiModalDataset(random_seed=999)
a = _collect_mm_samples(ds_a, hf_tokenizer)
b = _collect_mm_samples(ds_b, hf_tokenizer)
fa = [_mm_fingerprint_sample(s) for s in a]
fb = [_mm_fingerprint_sample(s) for s in b]
assert fa != fb
@pytest.mark.benchmark
def test_random_mm_respects_limits(
hf_tokenizer: PreTrainedTokenizerBase,
) -> None:
ds = RandomMultiModalDataset(random_seed=0)
# Requesting 3 items with a per-prompt limit of 1 should error per current
# design (dataset refuses to silently clamp below the requested baseline).
with pytest.raises(ValueError):
_collect_mm_samples(
ds,
hf_tokenizer,
num_requests=12,
base_items_per_request=3,
num_mm_items_range_ratio=0.0,
limit_mm_per_prompt={"image": 1, "video": 0},
bucket_config={(32, 32, 1): 1.0},
)
@pytest.mark.benchmark
def test_random_mm_zero_prob_entries_are_removed(
hf_tokenizer: PreTrainedTokenizerBase,
) -> None:
ds = RandomMultiModalDataset(random_seed=0)
# Second bucket has zero probability and should be ignored after
# normalization
samples = _collect_mm_samples(
ds,
hf_tokenizer,
num_requests=6,
base_items_per_request=2,
num_mm_items_range_ratio=0.0,
limit_mm_per_prompt={"image": 10, "video": 0},
bucket_config={(32, 32, 1): 1.0, (52, 64, 1): 0.0},
)
for s in samples:
assert isinstance(s.multi_modal_data, list)
typed_mm = cast(list[dict[str, Any]], s.multi_modal_data)
for it in typed_mm:
assert it.get("type") == "image_url"
@pytest.mark.benchmark
def test_random_mm_zero_items(hf_tokenizer: PreTrainedTokenizerBase) -> None:
ds = RandomMultiModalDataset(random_seed=0)
samples = _collect_mm_samples(
ds,
hf_tokenizer,
num_requests=5,
base_items_per_request=0,
num_mm_items_range_ratio=0.0,
limit_mm_per_prompt={"image": 5, "video": 0},
bucket_config={(32, 32, 1): 1.0},
)
for s in samples:
assert s.multi_modal_data == []
@pytest.mark.benchmark
def test_random_mm_num_items_per_prompt(hf_tokenizer: PreTrainedTokenizerBase) -> None:
ds = RandomMultiModalDataset(random_seed=0)
# Fixed number of images per prompt
# set num_mm_items_range_ratio to 0.0
# TODO: modify video values when video sampling is implemented
samples_fixed_items = _collect_mm_samples(
ds,
hf_tokenizer,
num_requests=5,
base_items_per_request=3,
num_mm_items_range_ratio=0.0,
limit_mm_per_prompt={"image": 3, "video": 0},
bucket_config={(32, 32, 1): 1.0},
)
# Must have 5 requests each with 3 mm items per prompt
assert len(samples_fixed_items) == 5
for s in samples_fixed_items:
mm_data = cast(list[dict[str, Any]], s.multi_modal_data)
assert len(mm_data) == 3
for it in mm_data:
assert it.get("type") == "image_url"
@pytest.mark.benchmark
def test_random_mm_bucket_config_not_mutated(
hf_tokenizer: PreTrainedTokenizerBase,
) -> None:
ds = RandomMultiModalDataset(random_seed=0)
# This bucket config is not normalized to sum to 1
# and has more buckets than requested images
original = {(32, 32, 1): 0.2, (52, 64, 1): 6, (25, 64, 1): 3}
# Keep a snapshot to compare after sampling
snapshot = dict(original)
_ = _collect_mm_samples(
ds,
hf_tokenizer,
num_requests=4,
base_items_per_request=1,
num_mm_items_range_ratio=0.0,
limit_mm_per_prompt={"image": 1, "video": 0},
bucket_config=original,
)
# Ensure the original dict content is unchanged
assert original == snapshot
# Vary number of mm items per prompt
# set num_mm_items_range_ratio to 0.5
samples_varying_items = _collect_mm_samples(
ds,
hf_tokenizer,
num_requests=5,
base_items_per_request=2,
num_mm_items_range_ratio=0.5,
limit_mm_per_prompt={"image": 4, "video": 0},
bucket_config={(32, 32, 1): 1.0},
)
# Must have 5 requests each with less than 4 mm items per prompt
# but at least 1 mm item per prompt
assert len(samples_varying_items) == 5
for s in samples_varying_items:
mm_data = cast(list[dict[str, Any]], s.multi_modal_data)
assert len(mm_data) <= 4
assert len(mm_data) >= 1
for it in mm_data:
assert it.get("type") == "image_url"