vllm/vllm/multimodal/profiling.py
Cyrus Leung 166a168b0f
[Doc] Fix misleading log during multi-modal profiling (#14955)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-03-17 06:14:32 -07:00

247 lines
8.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from abc import ABC, abstractmethod
from collections.abc import Mapping
from dataclasses import dataclass, field
from typing import Generic, TypeVar, cast
import numpy as np
import numpy.typing as npt
from PIL import Image
import vllm.envs as envs
from vllm.inputs import DummyData
from vllm.logger import init_logger
from .inputs import (MultiModalDataDict, MultiModalEncDecInputs,
MultiModalInputs)
from .processing import BaseMultiModalProcessor, BaseProcessingInfo
logger = init_logger(__name__)
@dataclass
class ProcessorInputs:
"""
Represents the keyword arguments to
:meth:`vllm.multimodal.processing.BaseMultiModalProcessor.apply`.
"""
prompt_text: str
mm_data: MultiModalDataDict
hf_processor_mm_kwargs: Mapping[str, object] = field(default_factory=dict)
_I = TypeVar("_I", bound=BaseProcessingInfo)
class BaseDummyInputsBuilder(ABC, Generic[_I]):
"""
Abstract base class that constructs the dummy data to profile
multi-modal models.
"""
def __init__(self, info: _I) -> None:
super().__init__()
self.info = info
@abstractmethod
def get_dummy_processor_inputs(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
"""
Build the input which, after processing, results in
:code:`self.info.get_mm_max_tokens_per_item()` placeholder tokens.
"""
raise NotImplementedError
def _get_dummy_audios(
self,
*,
length: int,
num_audios: int,
) -> list[npt.NDArray]:
audio = np.zeros((length, ))
return [audio] * num_audios
def _get_dummy_images(
self,
*,
width: int,
height: int,
num_images: int,
) -> list[Image.Image]:
image = Image.new("RGB", (width, height), color=0)
return [image] * num_images
def _get_dummy_videos(
self,
*,
width: int,
height: int,
num_frames: int,
num_videos: int,
) -> list[npt.NDArray]:
video = np.zeros((num_frames, width, height, 3))
return [video] * num_videos
class MultiModalProfiler(Generic[_I]):
"""
Contains code for running memory profiling for multi-modal models.
"""
def __init__(
self,
processor: BaseMultiModalProcessor[_I],
) -> None:
super().__init__()
self.processor = processor
@property
def processing_info(self) -> BaseProcessingInfo:
return self.processor.info
@property
def dummy_inputs(self) -> BaseDummyInputsBuilder[_I]:
return self.processor.dummy_inputs
def get_mm_limits(self) -> Mapping[str, int]:
mm_config = self.processing_info.ctx.get_mm_config()
supported_mm_limits = self.processing_info.get_supported_mm_limits()
mm_limits = {
modality: mm_config.get_limit_per_prompt(modality)
for modality in supported_mm_limits
}
for modality, supported_limit in supported_mm_limits.items():
limit = mm_limits[modality]
if supported_limit is not None and supported_limit < limit:
raise ValueError(
f"You set {modality}={limit} (or defaulted to 1) in "
f"`--limit-mm-per-prompt`, but this model only supports "
f"at most {supported_limit} {modality} items.")
return mm_limits
def _get_dummy_mm_inputs(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalInputs:
factory = self.dummy_inputs
processor_inputs = factory.get_dummy_processor_inputs(
seq_len, mm_counts)
return self.processor.apply(
prompt=processor_inputs.prompt_text,
mm_data=processor_inputs.mm_data,
hf_processor_mm_kwargs=processor_inputs.hf_processor_mm_kwargs,
)
def get_and_validate_mm_inputs(
self,
seq_len: int,
) -> tuple[MultiModalInputs, Mapping[str, int]]:
mm_counts = self.get_mm_limits()
info = self.processing_info
mm_max_tokens_per_item = info.get_mm_max_tokens_per_item(
seq_len, mm_counts)
if mm_counts.keys() != mm_max_tokens_per_item.keys():
raise AssertionError(
"The keys returned by `get_supported_mm_limits` "
f"({set(mm_counts.keys())}) should be the same as those "
"returned by `get_mm_max_tokens_per_item` "
f"({set(mm_max_tokens_per_item.keys())})")
mm_inputs = self._get_dummy_mm_inputs(seq_len, mm_counts)
placeholders_by_modality = mm_inputs["mm_placeholders"]
total_placeholders_by_modality = {
modality: sum(item["length"] for item in placeholders)
for modality, placeholders in placeholders_by_modality.items()
}
expected_placeholders_by_modality = {
modality: mm_max_tokens_per_item[modality] * mm_counts[modality]
for modality in placeholders_by_modality
}
if total_placeholders_by_modality != expected_placeholders_by_modality:
raise AssertionError(
f"The processed dummy data has a total of "
f"{total_placeholders_by_modality} placeholder tokens, which "
f"is not the expected {expected_placeholders_by_modality} "
"tokens.")
return mm_inputs, total_placeholders_by_modality
def get_encoder_dummy_data(
self,
seq_len: int,
) -> DummyData:
# Avoid circular import
from vllm.sequence import SequenceData
mm_inputs, _ = self.get_and_validate_mm_inputs(seq_len)
mm_inputs = cast(MultiModalEncDecInputs, mm_inputs)
# For encoder-decoder models, use encoder prompt token ids instead of
# decoder prompt to construct dummy seq_data for encoder profiling.
encoder_prompt_token_ids = mm_inputs["encoder_prompt_token_ids"]
total_len = len(encoder_prompt_token_ids)
num_tokens_to_pad = max(total_len, seq_len) - total_len
encoder_prompt_token_ids.extend([0] * num_tokens_to_pad)
return DummyData(
seq_data=SequenceData.from_seqs(encoder_prompt_token_ids),
multi_modal_data=None,
multi_modal_placeholders=None,
)
def get_decoder_dummy_data(
self,
seq_len: int,
) -> DummyData:
# Avoid circular import
from vllm.sequence import SequenceData
(mm_inputs, total_placeholders_by_modality
) = self.get_and_validate_mm_inputs(seq_len)
prompt_token_ids = mm_inputs["prompt_token_ids"]
total_len = len(prompt_token_ids)
# V0 does not support chunked prefill.
if total_len > seq_len and not envs.VLLM_USE_V1:
# `max_num_batched_tokens` is defined by `SchedulerConfig`
logger.warning(
"The sequence length used for profiling ("
"max_num_batched_tokens / max_num_seqs = %d) is too short "
"to hold the multi-modal embeddings in the worst case "
"(%d tokens in total, out of which %s are reserved for "
"multi-modal embeddings). This may cause certain "
"multi-modal inputs to fail during inference, even when "
"the input text is short. To avoid this, you should "
"increase `max_model_len`, reduce `max_num_seqs`, "
"and/or reduce `mm_counts`.", seq_len, total_len,
total_placeholders_by_modality)
return DummyData(
seq_data=SequenceData.from_prompt_token_counts((0, seq_len)),
multi_modal_data=None,
multi_modal_placeholders=None,
)
prompt_token_ids.extend([0] * (seq_len - len(prompt_token_ids)))
return DummyData(
seq_data=SequenceData.from_seqs(prompt_token_ids),
multi_modal_data=mm_inputs["mm_kwargs"],
multi_modal_placeholders=mm_inputs["mm_placeholders"],
)