vllm/tests/compile/test_silu_mul_quant_fusion.py
elvischenv 16a45b3a28
[NVIDIA] Support SiluMul + NVFP4 quant fusion (#23671)
Signed-off-by: jindih <jindih@nvidia.com>
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
Co-authored-by: jindih <jindih@nvidia.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
Co-authored-by: Luka Govedic <lgovedic@redhat.com>
2025-08-28 19:36:50 +00:00

140 lines
5.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
import vllm.envs as envs
from vllm._custom_ops import cutlass_scaled_fp4_mm, scaled_fp4_quant
# yapf conflicts with isort for this block
# yapf: disable
from vllm.compilation.activation_quant_fusion import (
FUSED_OPS, SILU_MUL_OP, ActivationQuantFusionPass)
# yapf: enable
from vllm.compilation.fusion import QUANT_OPS
from vllm.compilation.noop_elimination import NoOpEliminationPass
from vllm.config import CompilationConfig, PassConfig, VllmConfig
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.quantization.utils.quant_utils import (
GroupShape, kFp8StaticTensorSym, kNvfp4Quant)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
Fp8LinearOp)
from vllm.platforms import current_platform
from .backend import TestBackend
FP8_DTYPE = current_platform.fp8_dtype()
FP4_DTYPE = torch.uint8
def is_nvfp4_supported():
return current_platform.has_device_capability(100)
class TestSiluMulFp8QuantModel(torch.nn.Module):
def __init__(self, hidden_size: int, force_fp8_e4m3fnuz: bool, **kwargs):
super().__init__()
self.silu_and_mul = SiluAndMul()
self.wscale = torch.rand(1, dtype=torch.float32)
self.scale = torch.rand(1, dtype=torch.float32)
self.w = torch.rand(hidden_size, hidden_size).to(dtype=FP8_DTYPE).t()
self.fp8_linear = Fp8LinearOp(
force_fp8_e4m3fnuz=force_fp8_e4m3fnuz,
act_quant_static=True,
act_quant_group_shape=GroupShape.PER_TENSOR,
)
def forward(self, x):
y = self.silu_and_mul(x)
x2 = self.fp8_linear.apply(y,
self.w,
self.wscale,
input_scale=self.wscale)
return x2
def ops_in_model_before(self):
return [SILU_MUL_OP, QUANT_OPS[kFp8StaticTensorSym]]
def ops_in_model_after(self):
return [FUSED_OPS[kFp8StaticTensorSym]]
class TestSiluMulNvfp4QuantModel(torch.nn.Module):
def __init__(self, hidden_size: int, **kwargs):
super().__init__()
self.silu_and_mul = SiluAndMul()
self.w = torch.randint(256, (hidden_size, hidden_size // 2),
dtype=FP4_DTYPE)
self.wscale = torch.randn(hidden_size,
hidden_size // 16).to(dtype=FP8_DTYPE)
self.wscale2 = torch.rand(1, dtype=torch.float32)
self.scale = torch.rand(1, dtype=torch.float32)
def forward(self, x):
y = self.silu_and_mul(x)
y_quant, y_block_scale = scaled_fp4_quant(y, 1 / self.scale)
out = cutlass_scaled_fp4_mm(a=y_quant,
b=self.w,
block_scale_a=y_block_scale,
block_scale_b=self.wscale,
alpha=self.scale * self.wscale2,
out_dtype=y.dtype)
return out
def ops_in_model_before(self):
return [SILU_MUL_OP, QUANT_OPS[kNvfp4Quant]]
def ops_in_model_after(self):
return [FUSED_OPS[kNvfp4Quant]]
@pytest.mark.parametrize("num_tokens", [64])
@pytest.mark.parametrize("hidden_size", [128])
@pytest.mark.parametrize(
"model_class", [TestSiluMulFp8QuantModel, TestSiluMulNvfp4QuantModel]
if is_nvfp4_supported() else [TestSiluMulFp8QuantModel])
@pytest.mark.parametrize("force_fp8_e4m3fnuz", [True, False])
@pytest.mark.skipif(envs.VLLM_TARGET_DEVICE not in ["cuda", "rocm"],
reason="Only test on CUDA and ROCm")
def test_fusion_silu_and_mul_quant(num_tokens, hidden_size, model_class,
force_fp8_e4m3fnuz):
if model_class == TestSiluMulNvfp4QuantModel and force_fp8_e4m3fnuz:
pytest.skip("Duplicate tests for NVFP4")
torch.set_default_device("cuda")
torch.set_default_dtype(torch.float16)
# Reshape pass is needed for the fusion pass to work
config = VllmConfig()
config.compilation_config = CompilationConfig(
pass_config=PassConfig(enable_fusion=True, enable_noop=True))
fusion_pass = ActivationQuantFusionPass(config)
backend = TestBackend(NoOpEliminationPass(config), fusion_pass)
model = model_class(hidden_size=hidden_size,
force_fp8_e4m3fnuz=force_fp8_e4m3fnuz)
# First dimension dynamic
x = torch.rand(num_tokens, hidden_size * 2)
torch._dynamo.mark_dynamic(x, 0)
result = model(x)
model2 = torch.compile(model, backend=backend)
result2 = model2(x)
# Check that it gives the same answer
torch.testing.assert_close(result[0].to(dtype=torch.float16),
result2[0].to(dtype=torch.float16),
atol=1e-3,
rtol=1e-3)
# In pre-nodes, quant op should be present and fused kernels should not
backend.check_before_ops(model.ops_in_model_before())
# In post-nodes, fused kernels should be present and quant op should not
backend.check_after_ops(model.ops_in_model_after())