vllm/tests/kernels/quantization/test_cutlass_w4a8.py
Jiangyun Zhu c37c0af990
[Misc] Fix comments in tests/kernels/quantization (#23675)
Signed-off-by: zjy0516 <riverclouds.zhu@qq.com>
2025-08-26 19:31:20 +00:00

260 lines
8.9 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Tests for the CUTLASS W4A8 kernel.
Run `pytest tests/kernels/quantization/test_cutlass_w4a8.py`.
"""
from dataclasses import dataclass
from typing import Optional
import pytest
import torch
from vllm import _custom_ops as ops
from vllm.model_executor.layers.quantization.utils.quant_utils import (
pack_rows, quantize_weights)
from vllm.platforms import current_platform
from vllm.scalar_type import ScalarType, scalar_types
# TODO: in future PR refactor this and `is_quant_method_supported` in the kernel
# unit tests to a common utility function. Currently the use of
# `is_quant_method_supported` conflates kernels with quantization methods
# an assumption which is breaking down as quantizations methods can have
# have kernels and some kernels support multiple quantization methods.
IS_SUPPORTED_BY_GPU = current_platform.get_device_capability()[0] >= 9
MNK_SHAPES = [(1, 128, 128), (1, 512, 1024), (1, 4096, 4096), (1, 8192, 28672),
(13, 8192, 4096), (26, 4096, 8192), (64, 4096, 4096),
(64, 8192, 28672), (257, 128, 4096), (257, 4096, 4096),
(1024, 4096, 8192), (1024, 8192, 4096)]
# TODO(czhu): get supported schedules from fn
SCHEDULES = [
'128x16_1x1x1', '256x16_1x1x1', '128x32_1x1x1', '256x32_1x1x1',
'128x64_1x1x1', '256x64_1x1x1', '128x128_1x1x1', '256x128_1x1x1',
'128x256_1x1x1', '128x256_2x1x1'
]
@dataclass
class TypeConfig:
act_type: torch.dtype
weight_type: ScalarType
output_type: Optional[torch.dtype]
group_scale_type: Optional[torch.dtype]
channel_scale_type: Optional[torch.dtype]
token_scale_type: Optional[torch.dtype]
@dataclass
class Tensors:
w_ref: torch.Tensor
a_ref: torch.Tensor
a: torch.Tensor
w_q: torch.Tensor
w_g_s: torch.Tensor
w_ch_s: torch.Tensor
w_tok_s: torch.Tensor
# (Act Type, Weight Type, Output Type, Scale Type, ZeroPoints,
# Ch Scales Type, Tok Scales Type)
TestTypeTuple = tuple[list[torch.dtype], ScalarType, Optional[torch.dtype],
Optional[torch.dtype], bool]
TEST_TYPES = [
*(
TypeConfig(act_type=torch.float8_e4m3fn,
weight_type=w_type,
output_type=o_type,
group_scale_type=torch.float8_e4m3fn,
channel_scale_type=torch.float32,
token_scale_type=torch.float32)
for w_type in [scalar_types.int4]
# TODO(czhu): fp16 out type
for o_type in [torch.bfloat16]),
]
# TODO: in future PR refactor this and `is_quant_method_supported` in the kernel
# unit tests to a common utility function. Currently the use of
# `is_quant_method_supported` conflates kernels with quantization methods
# an assumption which is breaking down as quantizations methods can have
# have kernels and some kernels support multiple quantization methods.
IS_SUPPORTED_BY_GPU = current_platform.has_device_capability(90)
# For testing quantized linear kernels
def to_fp8(tensor: torch.Tensor):
finfo = torch.finfo(torch.float8_e4m3fn)
return tensor.clamp(min=finfo.min,
max=finfo.max).to(dtype=torch.float8_e4m3fn)
def cutlass_quantize_and_pack(atype: torch.dtype,
w: torch.Tensor,
wtype: ScalarType,
stype: Optional[torch.dtype],
group_size: Optional[int],
zero_points: bool = False):
assert wtype.is_integer(), "TODO: support floating point weights"
w_ref, w_q, w_s, w_zp = quantize_weights(w,
wtype,
group_size=group_size,
zero_points=zero_points)
# since scales are cast to fp8, we need to compute w_ref this way
w_ref = ((w_q).to(torch.float32) * w_s.to(atype).to(
torch.float32).repeat_interleave(group_size, dim=0)).to(atype)
# bit mask prevents sign extending int4 when packing
w_q = pack_rows(w_q & 0x0F, wtype.size_bits, *w_q.shape)
w_q = w_q.t().contiguous().t() # convert to col major
w_q_packed = ops.cutlass_encode_and_reorder_int4b(w_q)
w_s_packed = ops.cutlass_pack_scale_fp8(w_s.to(atype))
return w_ref, w_q_packed, w_s_packed, w_zp
def create_test_tensors(shape: tuple[int, int, int], types: TypeConfig,
group_size: Optional[int]) -> Tensors:
m, n, k = shape
print("create_test_tensors, shape:", shape, "types:", types, "group_size:",
group_size)
a = to_fp8(torch.randn((m, k), device="cuda"))
w = to_fp8(torch.randn((k, n), device="cuda"))
if types.group_scale_type is not None:
w = w.to(types.group_scale_type)
if w.dtype.itemsize == 1:
w = w.to(torch.float16)
w_ref, w_q_packed, w_s, _ = cutlass_quantize_and_pack(
a.dtype, w, types.weight_type, types.group_scale_type, group_size,
False)
a_ref = a.to(torch.float32)
w_ref = w_ref.to(torch.float32)
# for the practical use case we need per-tok scales for fp8 activations
w_tok_s = torch.randn((m, ), device='cuda', dtype=types.token_scale_type)
# weights are already per-group quantized, use placeholder here
w_ch_s = torch.ones((n, ), device='cuda', dtype=types.channel_scale_type)
return Tensors(w_ref=w_ref,
a_ref=a_ref,
a=a,
w_q=w_q_packed,
w_g_s=w_s,
w_ch_s=w_ch_s,
w_tok_s=w_tok_s)
def mm_test_helper(types: TypeConfig,
tensors: Tensors,
group_size: Optional[int] = None,
schedule: Optional[str] = None):
# CUTLASS upstream uses fp8 with fastaccum as reference
# https://github.com/NVIDIA/cutlass/blob/main/examples/55_hopper_mixed_dtype_gemm/55_hopper_int4_fp8_gemm.cu#L406
output_ref = torch._scaled_mm(
tensors.a_ref.to(types.act_type),
tensors.w_ref.to(types.act_type).t().contiguous().t(), # col major
tensors.w_tok_s.unsqueeze(1),
tensors.w_ch_s.unsqueeze(0),
out_dtype=types.output_type,
use_fast_accum=True)
output = ops.cutlass_w4a8_mm(
a=tensors.a,
b_q=tensors.w_q,
b_group_scales=tensors.w_g_s,
b_group_size=group_size,
b_channel_scales=tensors.w_ch_s,
a_token_scales=tensors.w_tok_s,
)
print(output)
print(output_ref)
torch.testing.assert_close(output,
output_ref.to(output.dtype),
rtol=1e-3,
atol=1e-3)
@pytest.mark.skipif(not IS_SUPPORTED_BY_GPU,
reason="CUTLASS W4A8 is not supported on this GPU type.")
@pytest.mark.parametrize("shape",
MNK_SHAPES,
ids=lambda x: "x".join(str(v) for v in x))
@pytest.mark.parametrize("types", TEST_TYPES)
@pytest.mark.parametrize("schedule", SCHEDULES)
def test_cutlass_w4a8(shape, types: TypeConfig, schedule):
group_sizes = [128]
for group_size in group_sizes:
tensors = create_test_tensors(shape, types, group_size)
mm_test_helper(types, tensors, group_size, schedule)
# Test to make sure cuda graphs work
class W4A8Layer(torch.nn.Module):
def __init__(self, **kwargs):
super().__init__()
self.kwargs = kwargs
def forward(self, a):
return ops.cutlass_w4a8_mm(a=a, **self.kwargs)
@pytest.mark.skipif(not IS_SUPPORTED_BY_GPU,
reason="CUTLASS W4A8 is not supported on this GPU type.")
def test_w4a8_cuda_graph():
m, n, k = 512, 4096, 4096
a = to_fp8(torch.randn((m, k), device="cuda"))
b = to_fp8(torch.randn((k, n), device="cuda"))
wtype = scalar_types.int4
stype = torch.float8_e4m3fn
group_size = 128
zero_points = False
w_ref, w_q_packed, w_s, _ = cutlass_quantize_and_pack(
a.dtype, b.to(torch.float16), wtype, stype, group_size, zero_points)
w_tok_s = torch.randn((m, ), device='cuda', dtype=torch.float32)
w_ch_s = torch.ones((n, ), device='cuda', dtype=torch.float32)
# Construct a trivial model with a single layer that calls the kernel
model = W4A8Layer(
b_q=w_q_packed,
b_group_scales=w_s,
b_group_size=group_size,
b_channel_scales=w_ch_s,
a_token_scales=w_tok_s,
)
output_ref = torch._scaled_mm(
a,
w_ref.to(a.dtype).t().contiguous().t(), # col major
w_tok_s.unsqueeze(1),
w_ch_s.unsqueeze(0),
out_dtype=torch.bfloat16,
use_fast_accum=True)
# Run the model with a cuda graph
stream = torch.cuda.Stream()
with torch.cuda.stream(stream):
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
output = model(a)
output.zero_()
g.replay()
torch.testing.assert_close(output, output_ref, rtol=1e-3, atol=1e-3)