mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 11:06:15 +08:00
196 lines
8.3 KiB
Python
196 lines
8.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import os
|
|
import platform
|
|
from typing import Callable, Optional
|
|
|
|
import torch
|
|
|
|
from vllm import envs
|
|
from vllm.config import VllmConfig
|
|
from vllm.distributed.parallel_state import get_pp_group, get_tp_group
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.utils import set_random_seed
|
|
from vllm.platforms import CpuArchEnum, current_platform
|
|
from vllm.platforms.cpu import CpuPlatform, LogicalCPUInfo
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.v1.core.sched.output import SchedulerOutput
|
|
from vllm.v1.outputs import ModelRunnerOutput
|
|
from vllm.v1.worker.cpu_model_runner import CPUModelRunner
|
|
from vllm.v1.worker.gpu_worker import (Worker,
|
|
init_worker_distributed_environment)
|
|
from vllm.v1.worker.utils import is_residual_scattered_for_sp
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class CPUWorker(Worker):
|
|
|
|
def __init__(self,
|
|
vllm_config: VllmConfig,
|
|
local_rank: int,
|
|
rank: int,
|
|
distributed_init_method: str,
|
|
is_driver_worker: bool = False):
|
|
super().__init__(vllm_config,
|
|
local_rank,
|
|
rank,
|
|
distributed_init_method,
|
|
is_driver_worker=is_driver_worker)
|
|
|
|
self.parallel_config.disable_custom_all_reduce = True
|
|
|
|
def init_device(self):
|
|
# Setup OpenMP threads affinity.
|
|
omp_cpuids = envs.VLLM_CPU_OMP_THREADS_BIND
|
|
if omp_cpuids == "auto" and platform.system() == "Linux":
|
|
cpu_arch = current_platform.get_cpu_architecture()
|
|
if cpu_arch in (CpuArchEnum.POWERPC, CpuArchEnum.S390X):
|
|
# For S390X/POWERPC SMT-8/4/2
|
|
self.local_omp_cpuid = self._get_autobind_cpu_ids(
|
|
lambda cpus: [cpu for cpu in cpus if cpu.id % 8 < 4])
|
|
elif current_platform.get_cpu_architecture() == CpuArchEnum.X86:
|
|
# For x86 SMT-2, use 1 CPU per core
|
|
self.local_omp_cpuid = self._get_autobind_cpu_ids(
|
|
lambda cpus: cpus[-1:])
|
|
else:
|
|
self.local_omp_cpuid = "all"
|
|
else:
|
|
local_dp_rank = self.parallel_config.data_parallel_rank_local
|
|
omp_cpuids = omp_cpuids.split("|")
|
|
if local_dp_rank is not None:
|
|
world_size = self.parallel_config.world_size
|
|
omp_cpuids = omp_cpuids[local_dp_rank *
|
|
world_size:(local_dp_rank + 1) *
|
|
world_size]
|
|
self.local_omp_cpuid = omp_cpuids[self.rank]
|
|
|
|
if self.local_omp_cpuid != "all":
|
|
ret = torch.ops._C_utils.init_cpu_threads_env(self.local_omp_cpuid)
|
|
if ret:
|
|
logger.info(ret)
|
|
|
|
# Note: unique identifier for creating allreduce shared memory
|
|
os.environ["VLLM_DIST_IDENT"] = self.distributed_init_method.split(
|
|
":")[-1]
|
|
# Initialize the distributed environment.
|
|
init_worker_distributed_environment(self.vllm_config, self.rank,
|
|
self.distributed_init_method,
|
|
self.local_rank,
|
|
current_platform.dist_backend)
|
|
# Set random seed.
|
|
set_random_seed(self.model_config.seed)
|
|
|
|
# Construct the model runner
|
|
self.model_runner: CPUModelRunner = CPUModelRunner(
|
|
self.vllm_config, torch.device("cpu"))
|
|
|
|
def sleep(self, level: int = 1) -> None:
|
|
logger.warning("sleep mode is not supported on CPU, ignore it.")
|
|
pass
|
|
|
|
def wake_up(self, tags: Optional[list[str]] = None) -> None:
|
|
logger.warning("sleep mode is not supported on CPU, ignore it.")
|
|
pass
|
|
|
|
def determine_available_memory(self) -> int:
|
|
return self.cache_config.cpu_kvcache_space_bytes # type: ignore
|
|
|
|
def compile_or_warm_up_model(self) -> None:
|
|
# Reset the seed to ensure that the random state is not affected by
|
|
# the model initialization and profiling.
|
|
set_random_seed(self.model_config.seed)
|
|
self.model_runner.warming_up_model()
|
|
|
|
@torch.inference_mode()
|
|
def execute_model(
|
|
self,
|
|
scheduler_output: "SchedulerOutput",
|
|
) -> Optional[ModelRunnerOutput]:
|
|
intermediate_tensors = None
|
|
num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
|
|
num_input_tokens = self.model_runner._get_num_input_tokens(
|
|
num_scheduled_tokens)
|
|
all_gather_tensors = {
|
|
"residual":
|
|
not is_residual_scattered_for_sp(self.vllm_config,
|
|
num_input_tokens)
|
|
}
|
|
if not get_pp_group().is_first_rank:
|
|
intermediate_tensors = IntermediateTensors(
|
|
get_pp_group().recv_tensor_dict(
|
|
all_gather_group=get_tp_group(),
|
|
all_gather_tensors=all_gather_tensors))
|
|
|
|
output = self.model_runner.execute_model(scheduler_output,
|
|
intermediate_tensors)
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
assert isinstance(output, IntermediateTensors)
|
|
get_pp_group().send_tensor_dict(
|
|
output.tensors,
|
|
all_gather_group=get_tp_group(),
|
|
all_gather_tensors=all_gather_tensors)
|
|
return None
|
|
|
|
assert isinstance(output, ModelRunnerOutput)
|
|
return output if self.is_driver_worker else None
|
|
|
|
def _get_autobind_cpu_ids(
|
|
self, cpu_selector: Callable[[list[LogicalCPUInfo]],
|
|
list[LogicalCPUInfo]]
|
|
) -> str:
|
|
"""
|
|
Return CPU ids to bind based on NUMA nodes.
|
|
Currently for rank N, only CPU ids on the N-th node in available NUMA
|
|
node list will be selected.
|
|
Args:
|
|
cpu_selector: a callable object to select CPUs from a CPU list
|
|
of a physical core. The input is a LogicalCPUInfo list, sorted by
|
|
the LogicalCPUInfo.id. A selected LogicalCPUInfo list should be
|
|
returned.
|
|
"""
|
|
|
|
allowed_numa_nodes, logical_cpu_list = \
|
|
CpuPlatform.get_allowed_cpu_core_node_list()
|
|
assert len(allowed_numa_nodes) >= self.parallel_config.world_size, (
|
|
f"No enough allowed NUMA nodes to bind threads of "
|
|
f"{self.parallel_config.world_size} CPUWorkers. "
|
|
f"Allowed NUMA nodes are {allowed_numa_nodes}. "
|
|
"Please try to bind threads manually.")
|
|
|
|
# Get CPUs on NUMA node `allowed_numa_nodes[local_rank]``
|
|
selected_numa_node = allowed_numa_nodes[
|
|
self.local_rank] # type: ignore
|
|
logical_cpu_list = [
|
|
x for x in logical_cpu_list if x.numa_node == selected_numa_node
|
|
]
|
|
|
|
# Select CPUs from each physical core via cpu_selector
|
|
core_to_cpus: dict[int, list[LogicalCPUInfo]] = {}
|
|
for cpu_info in logical_cpu_list:
|
|
if cpu_info.physical_core not in core_to_cpus:
|
|
core_to_cpus[cpu_info.physical_core] = []
|
|
core_to_cpus[cpu_info.physical_core].append(cpu_info)
|
|
logical_cpu_list = []
|
|
for cpu_list in core_to_cpus.values():
|
|
cpu_list = sorted(cpu_list, key=lambda x: x.id)
|
|
logical_cpu_list.extend(cpu_selector(cpu_list))
|
|
logical_cpu_list = sorted(logical_cpu_list, key=lambda x: x.id)
|
|
|
|
# Reserve CPUs for other processes
|
|
reserve_cpu_num = envs.VLLM_CPU_NUM_OF_RESERVED_CPU
|
|
if reserve_cpu_num is None:
|
|
need_reserve = (self.parallel_config.world_size > 1 or
|
|
self.parallel_config.data_parallel_size_local > 1)
|
|
reserve_cpu_num = 1 if need_reserve else 0
|
|
assert len(logical_cpu_list) > reserve_cpu_num, (
|
|
f"VLLM_CPU_NUM_OF_RESERVED_CPU ({reserve_cpu_num}) "
|
|
f"should less than {len(logical_cpu_list)}.")
|
|
if reserve_cpu_num != 0:
|
|
logical_cpu_list = logical_cpu_list[:-reserve_cpu_num]
|
|
|
|
logger.info("auto thread-binding list (id, physical core): %s",
|
|
[(x.id, x.physical_core) for x in logical_cpu_list])
|
|
return ",".join([str(x.id) for x in logical_cpu_list])
|