mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-23 03:05:01 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
333 lines
12 KiB
Python
333 lines
12 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import functools
|
|
import struct
|
|
from dataclasses import dataclass
|
|
from enum import Enum
|
|
from typing import Optional, Union
|
|
|
|
|
|
# Mirrors enum in `core/scalar_type.hpp`
|
|
class NanRepr(Enum):
|
|
NONE = 0 # nans are not supported
|
|
IEEE_754 = 1 # nans are: Exp all 1s, mantissa not all 0s
|
|
EXTD_RANGE_MAX_MIN = 2 # nans are: Exp all 1s, mantissa all 1s
|
|
|
|
|
|
# This ScalarType class is a parallel implementation of the C++ ScalarType
|
|
# class found in csrc/core/scalar_type.hpp. These two classes should be kept
|
|
# in sync until the inductor fully supports custom C++ classes.
|
|
@dataclass(frozen=True)
|
|
class ScalarType:
|
|
"""
|
|
ScalarType can represent a wide range of floating point and integer
|
|
types, in particular it can be used to represent sub-byte data types
|
|
(something that torch.dtype currently does not support). It is also
|
|
capable of representing types with a bias, i.e.:
|
|
`stored_value = value + bias`,
|
|
this is useful for quantized types (e.g. standard GPTQ 4bit uses a bias
|
|
of 8). The implementation for this class can be found in
|
|
csrc/core/scalar_type.hpp, these type signatures should be kept in sync
|
|
with that file.
|
|
"""
|
|
|
|
exponent: int
|
|
"""
|
|
Number of bits in the exponent if this is a floating point type
|
|
(zero if this an integer type)
|
|
"""
|
|
|
|
mantissa: int
|
|
"""
|
|
Number of bits in the mantissa if this is a floating point type,
|
|
or the number bits representing an integer excluding the sign bit if
|
|
this an integer type.
|
|
"""
|
|
|
|
signed: bool
|
|
"If the type is signed (i.e. has a sign bit)"
|
|
|
|
bias: int
|
|
"""
|
|
bias used to encode the values in this scalar type
|
|
(value = stored_value - bias, default 0) for example if we store the
|
|
type as an unsigned integer with a bias of 128 then the value 0 will be
|
|
stored as 128 and -1 will be stored as 127 and 1 will be stored as 129.
|
|
"""
|
|
|
|
_finite_values_only: bool = False
|
|
"""
|
|
Private: if infs are supported, used `has_infs()` instead.
|
|
"""
|
|
|
|
nan_repr: NanRepr = NanRepr.IEEE_754
|
|
"""
|
|
How NaNs are represent in this scalar type, returns NanRepr value.
|
|
(not applicable for integer types)
|
|
"""
|
|
|
|
def _floating_point_max_int(self) -> int:
|
|
assert (
|
|
self.mantissa <= 52 and self.exponent <= 11
|
|
), f"Cannot represent max/min as a double for type {self.__str__()}"
|
|
|
|
max_mantissa = (1 << self.mantissa) - 1
|
|
if self.nan_repr == NanRepr.EXTD_RANGE_MAX_MIN:
|
|
max_mantissa = max_mantissa - 1
|
|
|
|
max_exponent = (1 << self.exponent) - 2
|
|
if (self.nan_repr == NanRepr.EXTD_RANGE_MAX_MIN
|
|
or self.nan_repr == NanRepr.NONE):
|
|
assert (
|
|
self.exponent < 11
|
|
), f"Cannot represent max/min as a double for type {self.__str__()}"
|
|
max_exponent = max_exponent + 1
|
|
|
|
# adjust the exponent to match that of a double
|
|
# for now we assume the exponent bias is the standard 2^(e-1) -1, (where
|
|
# e is the exponent bits), there is some precedent for non-standard
|
|
# biases, example `float8_e4m3b11fnuz` here:
|
|
# https://github.com/jax-ml/ml_dtypes but to avoid premature over
|
|
# complication we are just assuming the standard exponent bias until
|
|
# there is a need to support non-standard biases
|
|
exponent_bias = (1 << (self.exponent - 1)) - 1
|
|
exponent_bias_double = (1 << 10) - 1 # double e = 11
|
|
|
|
max_exponent_double = (max_exponent - exponent_bias +
|
|
exponent_bias_double)
|
|
|
|
# shift the mantissa and exponent into the proper positions for an
|
|
# IEEE double and bitwise-or them together.
|
|
return (max_mantissa <<
|
|
(52 - self.mantissa)) | (max_exponent_double << 52)
|
|
|
|
def _floating_point_max(self) -> float:
|
|
double_raw = self._floating_point_max_int()
|
|
return struct.unpack('!d', struct.pack('!Q', double_raw))[0]
|
|
|
|
def _raw_max(self) -> Union[int, float]:
|
|
if self.is_floating_point():
|
|
return self._floating_point_max()
|
|
else:
|
|
assert (self.size_bits < 64 or self.size_bits == 64
|
|
and self.is_signed()), "Cannot represent max as an int"
|
|
return (1 << self.mantissa) - 1
|
|
|
|
def _raw_min(self) -> Union[int, float]:
|
|
if self.is_floating_point():
|
|
assert self.is_signed(
|
|
), "We currently assume all floating point types are signed"
|
|
sign_bit_double = 1 << 63
|
|
|
|
max_raw = self._floating_point_max_int()
|
|
min_raw = max_raw | sign_bit_double
|
|
return struct.unpack('!d', struct.pack('!Q', min_raw))[0]
|
|
else:
|
|
assert (not self.is_signed() or self.size_bits
|
|
<= 64), "Cannot represent min as a int64_t"
|
|
|
|
if self.is_signed():
|
|
return -(1 << (self.size_bits - 1))
|
|
else:
|
|
return 0
|
|
|
|
@functools.cached_property
|
|
def id(self) -> int:
|
|
"""
|
|
Convert the ScalarType to an int which can be passed to pytorch custom
|
|
ops. This layout of the int must be kept in sync with the C++
|
|
ScalarType's from_id method.
|
|
"""
|
|
val = 0
|
|
offset = 0
|
|
|
|
def or_and_advance(member, bit_width):
|
|
nonlocal val
|
|
nonlocal offset
|
|
bit_mask = (1 << bit_width) - 1
|
|
val = val | (int(member) & bit_mask) << offset
|
|
offset = offset + bit_width
|
|
|
|
or_and_advance(self.exponent, 8)
|
|
or_and_advance(self.mantissa, 8)
|
|
or_and_advance(self.signed, 1)
|
|
or_and_advance(self.bias, 32)
|
|
or_and_advance(self._finite_values_only, 1)
|
|
or_and_advance(self.nan_repr.value, 8)
|
|
|
|
assert offset <= 64, \
|
|
f"ScalarType fields too big {offset} to fit into an int64"
|
|
|
|
return val
|
|
|
|
@property
|
|
def size_bits(self) -> int:
|
|
return self.exponent + self.mantissa + int(self.signed)
|
|
|
|
def min(self) -> Union[int, float]:
|
|
"""
|
|
Min representable value for this scalar type.
|
|
(accounting for bias if there is one)
|
|
"""
|
|
return self._raw_min() - self.bias
|
|
|
|
def max(self) -> Union[int, float]:
|
|
"""
|
|
Max representable value for this scalar type.
|
|
(accounting for bias if there is one)
|
|
"""
|
|
return self._raw_max() - self.bias
|
|
|
|
def is_signed(self) -> bool:
|
|
"""
|
|
If the type is signed (i.e. has a sign bit), same as `signed`
|
|
added for consistency with:
|
|
https://pytorch.org/docs/stable/generated/torch.Tensor.is_signed.html
|
|
"""
|
|
return self.signed
|
|
|
|
def is_floating_point(self) -> bool:
|
|
"If the type is a floating point type"
|
|
return self.exponent != 0
|
|
|
|
def is_integer(self) -> bool:
|
|
"If the type is an integer type"
|
|
return self.exponent == 0
|
|
|
|
def has_bias(self) -> bool:
|
|
"If the type has a non-zero bias"
|
|
return self.bias != 0
|
|
|
|
def has_infs(self) -> bool:
|
|
"If the type is floating point and supports infinity"
|
|
return not self._finite_values_only
|
|
|
|
def has_nans(self) -> bool:
|
|
return self.nan_repr != NanRepr.NONE.value
|
|
|
|
def is_ieee_754(self) -> bool:
|
|
"""
|
|
If the type is a floating point type that follows IEEE 754
|
|
conventions
|
|
"""
|
|
return self.nan_repr == NanRepr.IEEE_754.value and \
|
|
not self._finite_values_only
|
|
|
|
def __str__(self) -> str:
|
|
"""
|
|
naming generally follows: https://github.com/jax-ml/ml_dtypes
|
|
for floating point types (leading f) the scheme is:
|
|
`float<size_bits>_e<exponent_bits>m<mantissa_bits>[flags]`
|
|
flags:
|
|
- no-flags: means it follows IEEE 754 conventions
|
|
- f: means finite values only (no infinities)
|
|
- n: means nans are supported (non-standard encoding)
|
|
for integer types the scheme is:
|
|
`[u]int<size_bits>[b<bias>]`
|
|
- if bias is not present it means its zero
|
|
"""
|
|
if self.is_floating_point():
|
|
ret = "float" + str(self.size_bits) + "_e" + str(
|
|
self.exponent) + "m" + str(self.mantissa)
|
|
|
|
if not self.is_ieee_754():
|
|
if self._finite_values_only:
|
|
ret = ret + "f"
|
|
if self.nan_repr != NanRepr.NONE:
|
|
ret = ret + "n"
|
|
|
|
return ret
|
|
else:
|
|
ret = ("int" if self.is_signed() else "uint") + str(self.size_bits)
|
|
if self.has_bias():
|
|
ret = ret + "b" + str(self.bias)
|
|
return ret
|
|
|
|
def __repr__(self) -> str:
|
|
return "ScalarType." + self.__str__()
|
|
|
|
# __len__ needs to be defined (and has to throw TypeError) for pytorch's
|
|
# opcheck to work.
|
|
def __len__(self) -> int:
|
|
raise TypeError
|
|
|
|
#
|
|
# Convenience Constructors
|
|
#
|
|
|
|
@classmethod
|
|
def int_(cls, size_bits: int, bias: Optional[int]) -> 'ScalarType':
|
|
"Create a signed integer scalar type (size_bits includes sign-bit)."
|
|
ret = cls(0, size_bits - 1, True, bias if bias else 0)
|
|
ret.id # noqa B018: make sure the id is cached
|
|
return ret
|
|
|
|
@classmethod
|
|
def uint(cls, size_bits: int, bias: Optional[int]) -> 'ScalarType':
|
|
"""Create a unsigned integer scalar type."""
|
|
ret = cls(0, size_bits, False, bias if bias else 0)
|
|
ret.id # noqa B018: make sure the id is cached
|
|
return ret
|
|
|
|
@classmethod
|
|
def float_IEEE754(cls, exponent: int, mantissa: int) -> 'ScalarType':
|
|
"""
|
|
Create a standard floating point type
|
|
(i.e. follows IEEE 754 conventions).
|
|
"""
|
|
assert (mantissa > 0 and exponent > 0)
|
|
ret = cls(exponent, mantissa, True, 0)
|
|
ret.id # noqa B018: make sure the id is cached
|
|
return ret
|
|
|
|
@classmethod
|
|
def float_(cls, exponent: int, mantissa: int, finite_values_only: bool,
|
|
nan_repr: NanRepr) -> 'ScalarType':
|
|
"""
|
|
Create a non-standard floating point type
|
|
(i.e. does not follow IEEE 754 conventions).
|
|
"""
|
|
assert (mantissa > 0 and exponent > 0)
|
|
assert (nan_repr != NanRepr.IEEE_754), (
|
|
"use `float_IEEE754` constructor for floating point types that "
|
|
"follow IEEE 754 conventions")
|
|
ret = cls(exponent, mantissa, True, 0, finite_values_only, nan_repr)
|
|
ret.id # noqa B018: make sure the id is cached
|
|
return ret
|
|
|
|
|
|
# naming generally follows: https://github.com/jax-ml/ml_dtypes
|
|
# for floating point types (leading f) the scheme is:
|
|
# `float<size_bits>_e<exponent_bits>m<mantissa_bits>[flags]`
|
|
# flags:
|
|
# - no-flags: means it follows IEEE 754 conventions
|
|
# - f: means finite values only (no infinities)
|
|
# - n: means nans are supported (non-standard encoding)
|
|
# for integer types the scheme is:
|
|
# `[u]int<size_bits>[b<bias>]`
|
|
# - if bias is not present it means its zero
|
|
|
|
|
|
class scalar_types:
|
|
int4 = ScalarType.int_(4, None)
|
|
uint4 = ScalarType.uint(4, None)
|
|
int8 = ScalarType.int_(8, None)
|
|
uint8 = ScalarType.uint(8, None)
|
|
float8_e4m3fn = ScalarType.float_(4, 3, True, NanRepr.EXTD_RANGE_MAX_MIN)
|
|
float8_e5m2 = ScalarType.float_IEEE754(5, 2)
|
|
float16_e8m7 = ScalarType.float_IEEE754(8, 7)
|
|
float16_e5m10 = ScalarType.float_IEEE754(5, 10)
|
|
|
|
# fp6, https://github.com/usyd-fsalab/fp6_llm/tree/main
|
|
float6_e3m2f = ScalarType.float_(3, 2, True, NanRepr.NONE)
|
|
|
|
# "gptq" types
|
|
uint2b2 = ScalarType.uint(2, 2)
|
|
uint3b4 = ScalarType.uint(3, 4)
|
|
uint4b8 = ScalarType.uint(4, 8)
|
|
uint8b128 = ScalarType.uint(8, 128)
|
|
|
|
# colloquial names
|
|
bfloat16 = float16_e8m7
|
|
float16 = float16_e5m10
|