gjgjos 18ed7746ea
[Feature] Add support for naver/splade-v3 (BERT-based sparse embedding model) (#26339)
Signed-off-by: gjgjos <gjgjos@naver.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-10-12 17:00:52 +00:00

928 lines
31 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Iterable, Set
import torch
from torch import nn
from transformers import BertConfig
from vllm.attention.layers.encoder_only_attention import EncoderOnlyAttention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, PoolerConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.pooler import (
ClassifierPooler,
DispatchPooler,
Pooler,
PoolingMethod,
PoolingParamsUpdate,
PoolingType,
)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import VocabParallelEmbedding
from vllm.sequence import IntermediateTensors
from vllm.tasks import PoolingTask
from vllm.v1.pool.metadata import PoolingMetadata
from .interfaces import SupportsCrossEncoding, SupportsQuant
from .interfaces_base import default_pooling_type
from .utils import AutoWeightsLoader, WeightsMapper, maybe_prefix
class BertEmbedding(nn.Module):
def __init__(self, config: BertConfig):
super().__init__()
self.size = config.hidden_size
self.word_embeddings = VocabParallelEmbedding(
config.vocab_size, config.hidden_size
)
self.position_embeddings = VocabParallelEmbedding(
config.max_position_embeddings, config.hidden_size
)
self.token_type_embeddings = VocabParallelEmbedding(
config.type_vocab_size, config.hidden_size
)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.register_buffer(
"position_ids",
torch.arange(config.max_position_embeddings).unsqueeze(0),
)
self.position_embedding_type = config.position_embedding_type
if self.position_embedding_type != "absolute":
raise ValueError(
"Only 'absolute' position_embedding_type" + " is supported"
)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
token_type_ids = _decode_token_type_ids(input_ids)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings + position_embeddings
embeddings = self.LayerNorm(embeddings)
return embeddings
class BertPooler(Pooler):
def __init__(self, config: BertConfig):
super().__init__()
self.pooling = PoolingMethod.from_pooling_type(PoolingType.CLS)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def get_supported_tasks(self) -> Set[PoolingTask]:
return self.pooling.get_supported_tasks()
def get_pooling_updates(self, task: PoolingTask) -> PoolingParamsUpdate:
return self.pooling.get_pooling_updates(task)
def _head(self, pooled_output: torch.Tensor):
pooled_output = self.dense(pooled_output)
pooled_output = self.activation(pooled_output)
return pooled_output
def forward(
self,
hidden_states: torch.Tensor | list[torch.Tensor],
pooling_metadata: PoolingMetadata,
) -> torch.Tensor | list[torch.Tensor]:
pooled_output = self.pooling(hidden_states, pooling_metadata)
if isinstance(pooled_output, list):
pooled_output = [self._head(output) for output in pooled_output]
else:
pooled_output = self._head(pooled_output)
return pooled_output
class BertEncoder(nn.Module):
def __init__(self, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.layer = nn.ModuleList(
[
BertLayer(
config=config,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.layer.{layer_idx}",
)
for layer_idx in range(config.num_hidden_layers)
]
)
def forward(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor:
for layer in self.layer:
hidden_states = layer(hidden_states)
return hidden_states
class BertLayer(nn.Module):
def __init__(
self,
config: BertConfig,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.attention = BertAttention(
hidden_size=config.hidden_size,
num_attention_heads=config.num_attention_heads,
layer_norm_eps=config.layer_norm_eps,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attention",
)
self.intermediate = BertIntermediate(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.intermediate",
)
self.output = BertOutput(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
layer_norm_eps=config.layer_norm_eps,
quant_config=quant_config,
prefix=f"{prefix}.output",
)
def forward(self, hidden_states: torch.Tensor):
attn_output = self.attention(hidden_states)
intermediate_output = self.intermediate(attn_output)
output = self.output(intermediate_output, attn_output)
return output
class BertAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_attention_heads: int,
layer_norm_eps: float,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.self = BertSelfAttention(
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.output",
)
self.output = BertSelfOutput(
hidden_size=hidden_size,
layer_norm_eps=layer_norm_eps,
quant_config=quant_config,
prefix=f"{prefix}.output",
)
def forward(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor:
self_output = self.self(hidden_states)
return self.output(self_output, hidden_states)
class BertSelfAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_attention_heads: int,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_attention_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = self.total_num_heads
self.head_dim = self.hidden_size // self.total_num_heads
assert self.head_dim * self.total_num_heads == self.hidden_size
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.qkv_proj = QKVParallelLinear(
hidden_size=self.hidden_size,
head_size=self.head_dim,
total_num_heads=self.total_num_heads,
total_num_kv_heads=self.total_num_kv_heads,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.attn = EncoderOnlyAttention(
num_heads=self.num_heads,
head_size=self.head_dim,
scale=self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
def forward(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
output = self.attn(q, k, v)
return output
class BertSelfOutput(nn.Module):
def __init__(
self,
hidden_size: int,
layer_norm_eps: float,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.dense = RowParallelLinear(
input_size=hidden_size,
output_size=hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.dense",
)
self.LayerNorm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
def forward(
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
) -> torch.Tensor:
hidden_states, _ = self.dense(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertIntermediate(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.dense = ColumnParallelLinear(
input_size=hidden_size,
output_size=intermediate_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.dense",
)
self.intermediate_act_fn = get_act_fn(hidden_act)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
layer_norm_eps: float,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.dense = RowParallelLinear(
input_size=intermediate_size,
output_size=hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.dense",
)
self.LayerNorm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
def forward(
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
) -> torch.Tensor:
hidden_states, _ = self.dense(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
@support_torch_compile
@default_pooling_type("CLS")
class BertModel(nn.Module, SupportsQuant):
is_pooling_model = True
packed_modules_mapping = {"qkv_proj": ["query", "key", "value"]}
def __init__(
self,
*,
vllm_config: VllmConfig,
prefix: str = "",
embedding_class: type[nn.Module] = BertEmbedding,
) -> None:
super().__init__()
self.config = vllm_config.model_config.hf_config
self.embeddings = embedding_class(self.config)
self.encoder = BertEncoder(vllm_config=vllm_config, prefix=f"{prefix}.encoder")
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embeddings.word_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
hidden_states = self.embeddings(
input_ids=input_ids,
position_ids=positions,
inputs_embeds=inputs_embeds,
)
return self.encoder(hidden_states)
def _load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "query", "q"),
("qkv_proj", "key", "k"),
("qkv_proj", "value", "v"),
]
loaded_stacked_params = []
other_weights = []
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
if name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
loaded_stacked_params.append(name)
break
else:
if name in params_dict:
other_weights.append((name, loaded_weight))
return other_weights, loaded_stacked_params
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
other_weights, loaded_stacked_params = self._load_weights(weights)
loader = AutoWeightsLoader(self, skip_prefixes=["pooler."])
loaded_params = loader.load_weights(other_weights)
loaded_params.update(loaded_stacked_params)
return loaded_params
@default_pooling_type("ALL")
class BertPoolingModel(BertModel):
is_pooling_model = True
def __init__(
self,
*,
vllm_config: VllmConfig,
prefix: str = "",
embedding_class: type[nn.Module] = BertEmbedding,
) -> None:
super().__init__(
vllm_config=vllm_config,
prefix=prefix,
embedding_class=embedding_class,
)
config = vllm_config.model_config.hf_config
self.pooler = BertPooler(config)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
other_weights, loaded_stacked_params = self._load_weights(weights)
loader = AutoWeightsLoader(self)
loaded_params = loader.load_weights(other_weights)
loaded_params.update(loaded_stacked_params)
return loaded_params
@default_pooling_type("CLS")
class BertEmbeddingModel(nn.Module, SupportsQuant):
"""A model that uses Bert to provide embedding functionalities.
This class encapsulates the BertModel and provides an interface for
embedding operations and customized pooling functions.
Attributes:
model: An instance of BertModel used for forward operations.
_pooler: An instance of Pooler used for pooling operations.
"""
is_pooling_model = True
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
pooler_config = vllm_config.model_config.pooler_config
assert pooler_config is not None
self.model = self._build_model(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
)
self.pooler = self._build_pooler(pooler_config)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
return self.model(
input_ids=input_ids,
positions=positions,
inputs_embeds=inputs_embeds,
intermediate_tensors=intermediate_tensors,
)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
weights_list = list(weights)
has_model_prefix = any(name.startswith("model.") for name, _ in weights_list)
if not has_model_prefix:
mapper = WeightsMapper(orig_to_new_prefix={"": "model."})
loader = AutoWeightsLoader(self, skip_prefixes=["lm_head."])
return loader.load_weights(weights_list, mapper=mapper)
def _build_model(self, vllm_config: VllmConfig, prefix: str = "") -> BertModel:
return BertModel(
vllm_config=vllm_config, prefix=prefix, embedding_class=BertEmbedding
)
def _build_pooler(self, pooler_config: PoolerConfig) -> Pooler:
return DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"embed": Pooler.for_embed(pooler_config),
}
)
# Here we encode the token type ids together with the input ids.
# Since we use int 32 for the input IDs and the vocabulary size
# is way lower than 2**31, there is room to encode additional
# bits. At the same time, for cross-encoder use cases, the
# token type ids are only 0 or 1, requiring only 1 bit.
# This means that we can store the token type ids in the 31st
# bit. We void the 32nd bit because that would produce a negative
# number, which could be used to signal other things.
#
# The reason for all of this is that all the tensors that are
# passed as input to the forward function of a module marked
# with @support_torch_compile have to be persistent. So to
# avoid adding more persistent tensors in the model runner, we
# encode more information in the same persistent tensor.
#
# Since the *ForClassification module is outside of the BertModel
# which is compiled, we can do the encoding here and then separate
# the information again in the Embedding layer. Since with bit masks
# we can do this entirely with torch operations and without branching,
# it works with torch compile.
TOKEN_TYPE_SHIFT = 30
def _encode_token_type_ids(
input_ids: torch.Tensor, token_type_ids: torch.Tensor
) -> None:
# input_ids can be padded to the right
input_ids[: token_type_ids.shape[0]].bitwise_or_(token_type_ids << TOKEN_TYPE_SHIFT)
def _decode_token_type_ids(input_ids: torch.Tensor) -> torch.Tensor:
ids_mask = (
torch.ones_like(input_ids, dtype=torch.int32, device=input_ids.device)
<< TOKEN_TYPE_SHIFT
)
tokens_mask = ids_mask.bitwise_not()
token_type_ids = input_ids.bitwise_and(ids_mask) >> TOKEN_TYPE_SHIFT
input_ids.bitwise_and_(tokens_mask)
return token_type_ids
class BertMLMHead(nn.Module):
def __init__(
self, hidden_size: int, vocab_size: int, layer_norm_eps: float = 1e-12
):
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.activation = nn.GELU()
self.layer_norm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
self.decoder = nn.Linear(hidden_size, vocab_size, bias=True)
def tie_weights_with_embeddings(self, embeddings_weight: torch.Tensor):
self.decoder.weight = embeddings_weight
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
x = self.dense(hidden_states)
x = self.activation(x)
x = self.layer_norm(x)
logits = self.decoder(x)
return logits
class SPLADESparsePooler(Pooler):
"""
SPLADE sparse pooling:
logits = mlm_head(hidden_states)
-> log1p(relu(logits))
-> (max|sum over L)
-> [V]
Padding is masked with an attention mask,
[CLS]/[SEP] is removed (selected),
and then pooled.
"""
def __init__(
self,
mlm_head: nn.Module,
cls_token_id: Optional[int] = 101,
sep_token_id: Optional[int] = 102,
pooling: str = "max",
remove_cls_sep: bool = True,
):
super().__init__()
assert pooling in ("max", "sum")
self.mlm_head = mlm_head
self.cls_token_id = cls_token_id
self.sep_token_id = sep_token_id
self.pooling = pooling
self.remove_cls_sep = remove_cls_sep
def get_supported_tasks(self) -> Set[PoolingTask]:
return {"embed"}
def get_pooling_updates(self, task: PoolingTask) -> PoolingParamsUpdate:
return PoolingParamsUpdate(requires_token_ids=True)
def forward(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> torch.Tensor:
assert isinstance(hidden_states, torch.Tensor) and hidden_states.dim() == 2
lens_tensor: torch.Tensor = pooling_metadata.prompt_lens
lens: list[int] = lens_tensor.tolist()
B: int = len(lens)
token_ids = pooling_metadata.prompt_token_ids
offset = 0
pooled_list: list[torch.Tensor] = []
for i in range(B):
L = int(lens[i])
hs = hidden_states[offset : offset + L]
start_idx = 0
end_idx = L
if self.remove_cls_sep and token_ids is not None:
if (
self.cls_token_id is not None
and token_ids[i, 0].item() == self.cls_token_id
):
start_idx = 1
if (
self.sep_token_id is not None
and token_ids[i, L - 1].item() == self.sep_token_id
):
end_idx = max(start_idx, L - 1)
if end_idx <= start_idx:
V = int(self.mlm_head.decoder.out_features)
pooled_list.append(hs.new_zeros((V,)))
offset += L
continue
logits_i = self.mlm_head(hs[start_idx:end_idx])
scores_i = torch.log1p(torch.relu(logits_i))
if self.pooling == "sum":
pooled_i = scores_i.sum(dim=0)
else: # "max"
pooled_i = scores_i.max(dim=0).values
pooled_list.append(pooled_i.contiguous())
offset += L
return torch.stack(pooled_list, dim=0).contiguous()
@default_pooling_type("CLS")
class BertSpladeSparseEmbeddingModel(BertEmbeddingModel):
"""
BertEmbeddingModel + SPLADE sparse embedding.
- Make logits by self.mlm_head
- pooler: SPLADESparsePooler(mlm_head...)
"""
def __init__(
self, *, vllm_config: VllmConfig, prefix: str = "", splade_pooling: str = "max"
):
super().__init__(vllm_config=vllm_config, prefix=prefix)
cfg = vllm_config.model_config.hf_config
# MLM head
self.mlm_head = BertMLMHead(
hidden_size=cfg.hidden_size,
vocab_size=cfg.vocab_size,
layer_norm_eps=getattr(cfg, "layer_norm_eps", 1e-12),
)
self._splade_pooling = splade_pooling
pooler_config = vllm_config.model_config.pooler_config
assert pooler_config is not None
self.pooler = self._build_pooler(pooler_config)
def _build_pooler(self, pooler_config: PoolerConfig) -> Pooler:
cfg = self.model.config
if not hasattr(self, "mlm_head"):
self.mlm_head = BertMLMHead(
hidden_size=cfg.hidden_size,
vocab_size=cfg.vocab_size,
layer_norm_eps=getattr(cfg, "layer_norm_eps", 1e-12),
)
pooling_mode = getattr(self, "_splade_pooling", "max")
cls_id = getattr(cfg, "cls_token_id", None)
sep_id = getattr(cfg, "sep_token_id", None)
return DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"embed": SPLADESparsePooler(
mlm_head=self.mlm_head,
cls_token_id=cls_id,
sep_token_id=sep_id,
pooling=pooling_mode, # "max" or "sum"
remove_cls_sep=True,
),
}
)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
if not hasattr(self, "mlm_head"):
cfg = self.model.config
self.mlm_head = BertMLMHead(
hidden_size=cfg.hidden_size,
vocab_size=cfg.vocab_size,
layer_norm_eps=getattr(cfg, "layer_norm_eps", 1e-12),
)
def _strip(name: str) -> str:
for p in ("model.", "bert."):
if name.startswith(p):
name = name[len(p) :]
return name
weights_list = list(weights)
model_side: list[tuple[str, torch.Tensor]] = []
mlm_side: list[tuple[str, torch.Tensor]] = []
for k, w in weights_list:
name = _strip(k)
if name.startswith("cls.predictions."):
mlm_side.append((name, w))
else:
model_side.append((name, w))
loaded: set[str] = set()
loaded_model = self.model.load_weights(model_side)
loaded.update({"model." + n for n in loaded_model})
if mlm_side:
name_map = {
"cls.predictions.transform.dense.weight": "mlm_head.dense.weight",
"cls.predictions.transform.dense.bias": "mlm_head.dense.bias",
("cls.predictions.transform.LayerNorm.weight"): (
"mlm_head.layer_norm.weight"
),
("cls.predictions.transform.LayerNorm.bias"): (
"mlm_head.layer_norm.bias"
),
"cls.predictions.decoder.weight": "mlm_head.decoder.weight",
"cls.predictions.decoder.bias": "mlm_head.decoder.bias",
}
remapped = [(name_map[n], w) for n, w in mlm_side if n in name_map]
if remapped:
loaded_mlm = AutoWeightsLoader(self).load_weights(remapped)
loaded.update(loaded_mlm)
return loaded
@default_pooling_type("CLS")
class BertForSequenceClassification(nn.Module, SupportsCrossEncoding, SupportsQuant):
"""A model that uses Bert to provide embedding functionalities.
This class encapsulates the BertModel and provides an interface for
embedding operations and customized pooling functions.
Attributes:
model: An instance of BertModel used for forward operations.
_pooler: An instance of Pooler used for pooling operations.
"""
is_pooling_model = True
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
self.num_labels = config.num_labels
self.bert = BertPoolingModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "bert"),
embedding_class=BertEmbedding,
)
self.classifier = nn.Linear(
config.hidden_size,
config.num_labels,
dtype=vllm_config.model_config.head_dtype,
)
pooler_config = vllm_config.model_config.pooler_config
assert pooler_config is not None
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
"classify": ClassifierPooler(
pooling=self.bert.pooler,
classifier=self.classifier,
act_fn=ClassifierPooler.act_fn_for_seq_cls(
vllm_config.model_config
),
),
"score": ClassifierPooler(
pooling=self.bert.pooler,
classifier=self.classifier,
act_fn=ClassifierPooler.act_fn_for_cross_encoder(
vllm_config.model_config
),
),
}
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.bert.get_input_embeddings(input_ids)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
loader = AutoWeightsLoader(self)
loaded_params = loader.load_weights(weights)
return loaded_params
def forward(
self,
input_ids: torch.Tensor | None,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
token_type_ids: torch.Tensor | None = None,
) -> torch.Tensor:
if token_type_ids is not None:
assert self.bert.config.vocab_size < (1 << TOKEN_TYPE_SHIFT)
assert input_ids is not None
_encode_token_type_ids(input_ids, token_type_ids)
return self.bert(
input_ids=input_ids,
positions=positions,
inputs_embeds=inputs_embeds,
intermediate_tensors=intermediate_tensors,
)
@default_pooling_type("ALL")
class BertForTokenClassification(nn.Module):
is_pooling_model = True
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
self.head_dtype = vllm_config.model_config.head_dtype
self.num_labels = config.num_labels
self.bert = BertModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "bert"),
embedding_class=BertEmbedding,
)
self.classifier = nn.Linear(
config.hidden_size, config.num_labels, dtype=self.head_dtype
)
pooler_config = vllm_config.model_config.pooler_config
assert pooler_config is not None
self.pooler = DispatchPooler(
{
"encode": Pooler.for_encode(pooler_config),
}
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.bert.get_input_embeddings(input_ids)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
loader = AutoWeightsLoader(self)
loaded_params = loader.load_weights(weights)
return loaded_params
def forward(
self,
input_ids: torch.Tensor | None,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
token_type_ids: torch.Tensor | None = None,
) -> torch.Tensor:
if token_type_ids is not None:
assert self.bert.config.vocab_size < (1 << TOKEN_TYPE_SHIFT)
assert input_ids is not None
_encode_token_type_ids(input_ids, token_type_ids)
hidden_states = self.bert(
input_ids=input_ids,
positions=positions,
inputs_embeds=inputs_embeds,
intermediate_tensors=intermediate_tensors,
)
hidden_states = hidden_states.to(self.head_dtype)
return self.classifier(hidden_states)