vllm/tests/multimodal/test_utils.py
Cyrus Leung babad6e5dd
[Misc] Move DP for ViT code inside model executor dir (#25459)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-09-23 09:20:52 +00:00

395 lines
14 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import base64
import mimetypes
import os
from tempfile import NamedTemporaryFile, TemporaryDirectory
from typing import TYPE_CHECKING, NamedTuple
import numpy as np
import pytest
from PIL import Image, ImageChops
from vllm.multimodal.image import convert_image_mode
from vllm.multimodal.inputs import PlaceholderRange
from vllm.multimodal.utils import MediaConnector, argsort_mm_positions
if TYPE_CHECKING:
from vllm.multimodal.inputs import MultiModalPlaceholderDict
# Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA)
TEST_IMAGE_ASSETS = [
"2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg", # "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
"Grayscale_8bits_palette_sample_image.png", # "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png",
"1280px-Venn_diagram_rgb.svg.png", # "https://upload.wikimedia.org/wikipedia/commons/thumb/9/91/Venn_diagram_rgb.svg/1280px-Venn_diagram_rgb.svg.png",
"RGBA_comp.png", # "https://upload.wikimedia.org/wikipedia/commons/0/0b/RGBA_comp.png",
]
TEST_VIDEO_URLS = [
"https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4",
"https://github.com/opencv/opencv/raw/refs/tags/4.12.0/samples/data/vtest.avi",
]
@pytest.fixture(scope="module")
def url_images(local_asset_server) -> dict[str, Image.Image]:
return {
image_url: local_asset_server.get_image_asset(image_url)
for image_url in TEST_IMAGE_ASSETS
}
def get_supported_suffixes() -> tuple[str, ...]:
# We should at least test the file types mentioned in GPT-4 with Vision
OPENAI_SUPPORTED_SUFFIXES = ('.png', '.jpeg', '.jpg', '.webp', '.gif')
# Additional file types that are supported by us
EXTRA_SUPPORTED_SUFFIXES = ('.bmp', '.tiff')
return OPENAI_SUPPORTED_SUFFIXES + EXTRA_SUPPORTED_SUFFIXES
def _image_equals(a: Image.Image, b: Image.Image) -> bool:
return (np.asarray(a) == np.asarray(convert_image_mode(b, a.mode))).all()
@pytest.mark.asyncio
@pytest.mark.parametrize("image_url", TEST_IMAGE_ASSETS, indirect=True)
async def test_fetch_image_http(image_url: str):
connector = MediaConnector()
image_sync = connector.fetch_image(image_url)
image_async = await connector.fetch_image_async(image_url)
assert _image_equals(image_sync, image_async)
@pytest.mark.asyncio
@pytest.mark.parametrize("raw_image_url", TEST_IMAGE_ASSETS)
@pytest.mark.parametrize("suffix", get_supported_suffixes())
async def test_fetch_image_base64(url_images: dict[str, Image.Image],
raw_image_url: str, suffix: str):
connector = MediaConnector()
url_image = url_images[raw_image_url]
try:
mime_type = Image.MIME[Image.registered_extensions()[suffix]]
except KeyError:
try:
mime_type = mimetypes.types_map[suffix]
except KeyError:
pytest.skip('No MIME type')
with NamedTemporaryFile(suffix=suffix) as f:
try:
url_image.save(f.name)
except Exception as e:
if e.args[0] == 'cannot write mode RGBA as JPEG':
pytest.skip('Conversion not supported')
raise
base64_image = base64.b64encode(f.read()).decode("utf-8")
data_url = f"data:{mime_type};base64,{base64_image}"
data_image_sync = connector.fetch_image(data_url)
if _image_equals(url_image, Image.open(f)):
assert _image_equals(url_image, data_image_sync)
else:
pass # Lossy format; only check that image can be opened
data_image_async = await connector.fetch_image_async(data_url)
assert _image_equals(data_image_sync, data_image_async)
@pytest.mark.asyncio
@pytest.mark.parametrize("image_url", TEST_IMAGE_ASSETS, indirect=True)
async def test_fetch_image_local_files(image_url: str):
connector = MediaConnector()
with TemporaryDirectory() as temp_dir:
local_connector = MediaConnector(allowed_local_media_path=temp_dir)
origin_image = connector.fetch_image(image_url)
origin_image.save(os.path.join(temp_dir, os.path.basename(image_url)),
quality=100,
icc_profile=origin_image.info.get('icc_profile'))
image_async = await local_connector.fetch_image_async(
f"file://{temp_dir}/{os.path.basename(image_url)}")
image_sync = local_connector.fetch_image(
f"file://{temp_dir}/{os.path.basename(image_url)}")
# Check that the images are equal
assert not ImageChops.difference(image_sync, image_async).getbbox()
with pytest.raises(ValueError, match="must be a subpath"):
await local_connector.fetch_image_async(
f"file://{temp_dir}/../{os.path.basename(image_url)}")
with pytest.raises(RuntimeError, match="Cannot load local files"):
await connector.fetch_image_async(
f"file://{temp_dir}/../{os.path.basename(image_url)}")
with pytest.raises(ValueError, match="must be a subpath"):
local_connector.fetch_image(
f"file://{temp_dir}/../{os.path.basename(image_url)}")
with pytest.raises(RuntimeError, match="Cannot load local files"):
connector.fetch_image(
f"file://{temp_dir}/../{os.path.basename(image_url)}")
@pytest.mark.asyncio
@pytest.mark.parametrize("image_url", [TEST_IMAGE_ASSETS[0]], indirect=True)
async def test_fetch_image_local_files_with_space_in_name(image_url: str):
connector = MediaConnector()
with TemporaryDirectory() as temp_dir:
local_connector = MediaConnector(allowed_local_media_path=temp_dir)
origin_image = connector.fetch_image(image_url)
filename = "file name with space.jpg"
origin_image.save(os.path.join(temp_dir, filename),
quality=100,
icc_profile=origin_image.info.get('icc_profile'))
try:
image_async = await local_connector.fetch_image_async(
f"file://{temp_dir}/{filename}")
image_sync = local_connector.fetch_image(
f"file://{temp_dir}/{filename}")
except FileNotFoundError as e:
pytest.fail(
"Failed to fetch image with space in name: {}".format(e))
# Check that the images are equal
assert not ImageChops.difference(image_sync, image_async).getbbox()
@pytest.mark.asyncio
async def test_fetch_image_error_conversion():
connector = MediaConnector()
broken_img = ""
# PIL.UnidentifiedImageError should be converted to ValueError
with pytest.raises(ValueError):
await connector.fetch_image_async(broken_img)
with pytest.raises(ValueError):
connector.fetch_image(broken_img)
@pytest.mark.asyncio
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
@pytest.mark.parametrize("num_frames", [-1, 32, 1800])
async def test_fetch_video_http(video_url: str, num_frames: int):
connector = MediaConnector(
media_io_kwargs={"video": {
"num_frames": num_frames,
}})
video_sync, metadata_sync = connector.fetch_video(video_url)
video_async, metadata_async = await connector.fetch_video_async(video_url)
assert np.array_equal(video_sync, video_async)
assert metadata_sync == metadata_async
@pytest.mark.asyncio
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
@pytest.mark.parametrize("max_duration", [1, 60, 1800])
@pytest.mark.parametrize("requested_fps", [2, 24])
async def test_fetch_video_http_with_dynamic_loader(
video_url: str, max_duration: int, requested_fps: int,
monkeypatch: pytest.MonkeyPatch):
with monkeypatch.context() as m:
m.setenv("VLLM_VIDEO_LOADER_BACKEND", "opencv_dynamic")
connector = MediaConnector(
media_io_kwargs={
"video": {
"max_duration": max_duration,
"requested_fps": requested_fps,
}
})
video_sync, metadata_sync = connector.fetch_video(video_url)
video_async, metadata_async = await connector.fetch_video_async(
video_url)
assert np.array_equal(video_sync, video_async)
assert metadata_sync == metadata_async
assert metadata_sync["video_backend"] == "opencv_dynamic"
# Used for `test_argsort_mm_positions`.
class TestCase(NamedTuple):
mm_positions: "MultiModalPlaceholderDict"
expected_modality_idxs: list[tuple[str, int]]
def test_argsort_mm_positions():
test_cases = [
# Single modality
## Internally sorted
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=0, length=2),
PlaceholderRange(offset=3, length=2),
]
},
expected_modality_idxs=[
("image", 0),
("image", 1),
],
),
## Internally unsorted
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=3, length=2),
PlaceholderRange(offset=0, length=2),
]
},
expected_modality_idxs=[
("image", 1),
("image", 0),
],
),
# Two modalities
## Internally sorted
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=7, length=4),
PlaceholderRange(offset=11, length=5),
],
"audio": [
PlaceholderRange(offset=0, length=2),
PlaceholderRange(offset=2, length=3),
]
},
expected_modality_idxs=[
("audio", 0),
("audio", 1),
("image", 0),
("image", 1),
],
),
## Interleaved, internally sorted
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=0, length=4),
PlaceholderRange(offset=8, length=2),
],
"audio": [
PlaceholderRange(offset=5, length=2),
PlaceholderRange(offset=11, length=4),
]
},
expected_modality_idxs=[
("image", 0),
("audio", 0),
("image", 1),
("audio", 1),
],
),
## Interleaved, internally unsorted
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=8, length=2),
PlaceholderRange(offset=0, length=4),
],
"audio": [
PlaceholderRange(offset=11, length=4),
PlaceholderRange(offset=5, length=2),
]
},
expected_modality_idxs=[
("image", 1),
("audio", 1),
("image", 0),
("audio", 0),
],
),
# Three modalities
## Internally sorted
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=15, length=7),
PlaceholderRange(offset=22, length=8),
],
"audio": [
PlaceholderRange(offset=0, length=2),
],
"video": [
PlaceholderRange(offset=3, length=4),
PlaceholderRange(offset=7, length=5),
PlaceholderRange(offset=12, length=6),
]
},
expected_modality_idxs=[
("audio", 0),
("video", 0),
("video", 1),
("video", 2),
("image", 0),
("image", 1),
],
),
## Interleaved, internally sorted
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=0, length=2),
PlaceholderRange(offset=2, length=3),
PlaceholderRange(offset=20, length=4),
],
"audio": [
PlaceholderRange(offset=5, length=2),
],
"video": [
PlaceholderRange(offset=8, length=5),
]
},
expected_modality_idxs=[
("image", 0),
("image", 1),
("audio", 0),
("video", 0),
("image", 2),
],
),
## Interleaved, internally sunorted
TestCase(
mm_positions={
"image": [
PlaceholderRange(offset=0, length=2),
PlaceholderRange(offset=20, length=4),
PlaceholderRange(offset=2, length=3),
],
"audio": [
PlaceholderRange(offset=5, length=2),
],
"video": [
PlaceholderRange(offset=8, length=5),
]
},
expected_modality_idxs=[
("image", 0),
("image", 2),
("audio", 0),
("video", 0),
("image", 1),
],
),
]
for mm_positions, expected_modality_idxs in test_cases:
modality_idxs = argsort_mm_positions(mm_positions)
assert modality_idxs == expected_modality_idxs