mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-28 22:43:07 +08:00
183 lines
6.0 KiB
Python
183 lines
6.0 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import itertools
|
|
from dataclasses import dataclass
|
|
|
|
from vllm.logger import init_logger
|
|
from vllm.logprobs import (
|
|
PromptLogprobs,
|
|
SampleLogprobs,
|
|
append_logprobs_for_next_position,
|
|
create_prompt_logprobs,
|
|
create_sample_logprobs,
|
|
)
|
|
from vllm.transformers_utils.detokenizer_utils import (
|
|
AnyTokenizer,
|
|
convert_ids_list_to_tokens,
|
|
)
|
|
from vllm.v1.engine import EngineCoreOutput, EngineCoreRequest
|
|
from vllm.v1.outputs import LogprobsLists, LogprobsTensors
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
NONES = itertools.repeat(None)
|
|
|
|
|
|
@dataclass
|
|
class LogprobsProcessor:
|
|
# Tokenizer for this request,
|
|
# None if detokenization is disabled.
|
|
tokenizer: AnyTokenizer | None
|
|
|
|
# Logprobs for this request
|
|
logprobs: SampleLogprobs | None
|
|
prompt_logprobs: PromptLogprobs | None
|
|
cumulative_logprob: float | None
|
|
num_logprobs: int | None
|
|
num_prompt_logprobs: int | None
|
|
|
|
@classmethod
|
|
def from_new_request(
|
|
cls,
|
|
tokenizer: AnyTokenizer | None,
|
|
request: EngineCoreRequest,
|
|
) -> "LogprobsProcessor":
|
|
assert request.sampling_params is not None
|
|
num_logprobs = request.sampling_params.logprobs
|
|
num_prompt_logprobs = request.sampling_params.prompt_logprobs
|
|
return cls(
|
|
tokenizer=tokenizer,
|
|
cumulative_logprob=(None if num_logprobs is None else 0.0),
|
|
logprobs=(None if num_logprobs is None else create_sample_logprobs()),
|
|
prompt_logprobs=(
|
|
None if num_prompt_logprobs is None else create_prompt_logprobs()
|
|
),
|
|
num_prompt_logprobs=num_prompt_logprobs,
|
|
num_logprobs=num_logprobs,
|
|
)
|
|
|
|
def _update_sample_logprobs(self, logprobs_lists: LogprobsLists) -> None:
|
|
"""Update with sample logprobs from EngineCore.
|
|
|
|
Outer lists are only of len > 1 if EngineCore made
|
|
>1 tokens in prior step (e.g. in spec decoding).
|
|
|
|
Args:
|
|
logprobs_lists: the lists of logprob tokens, logprobs, and ranks.
|
|
|
|
"""
|
|
|
|
assert self.num_logprobs is not None
|
|
assert self.logprobs is not None
|
|
assert self.cumulative_logprob is not None
|
|
|
|
token_ids_lst, logprobs_lst, ranks_lst, _ = logprobs_lists
|
|
|
|
for rank_np, logprobs_np, token_ids_np in zip(
|
|
ranks_lst, logprobs_lst, token_ids_lst
|
|
):
|
|
rank = rank_np.tolist()
|
|
logprobs = logprobs_np.tolist()
|
|
token_ids = token_ids_np.tolist()
|
|
# Detokenize (non-incrementally).
|
|
decoded_tokens = (
|
|
NONES
|
|
if self.tokenizer is None
|
|
else (convert_ids_list_to_tokens(self.tokenizer, token_ids))
|
|
)
|
|
|
|
# Sampler puts the sampled logprob in first.
|
|
sampled_token_logprob = logprobs[0]
|
|
self.cumulative_logprob += sampled_token_logprob
|
|
|
|
# Update with the Logprob container for this pos.
|
|
append_logprobs_for_next_position(
|
|
self.logprobs,
|
|
token_ids,
|
|
logprobs,
|
|
decoded_tokens,
|
|
rank,
|
|
self.num_logprobs,
|
|
)
|
|
|
|
def _update_prompt_logprobs(
|
|
self,
|
|
prompt_logprobs_tensors: LogprobsTensors,
|
|
) -> None:
|
|
"""Update with prompt logprobs from EngineCore.
|
|
|
|
Args:
|
|
prompt_logprobs_tensors: tuple containing the prompt logprobs
|
|
tensors.
|
|
|
|
"""
|
|
|
|
# Prompt logprobs are enabled.
|
|
assert self.num_prompt_logprobs is not None
|
|
assert self.prompt_logprobs is not None
|
|
|
|
token_ids, logprobs, ranks = prompt_logprobs_tensors
|
|
|
|
# Detokenize non-incrementally.
|
|
# Output is flat: [num_tok, num_lps] -> [num_tok * num_lps]
|
|
decoded_tokens = (
|
|
None
|
|
if self.tokenizer is None
|
|
else (
|
|
convert_ids_list_to_tokens(self.tokenizer, token_ids.flatten().tolist())
|
|
)
|
|
)
|
|
|
|
# Recover shapes.
|
|
num_prompt_tokens, num_logprobs = logprobs.shape
|
|
|
|
# Pythonize the torch tensors.
|
|
prompt_token_ranks = ranks.tolist()
|
|
prompt_logprobs = logprobs.tolist()
|
|
token_ids = token_ids.tolist()
|
|
|
|
# Make Logprob for each position.
|
|
for pos in range(num_prompt_tokens):
|
|
# Handle flattening.
|
|
offset = pos * num_logprobs
|
|
offset_end = offset + num_logprobs
|
|
decoded_tokens_for_pos = (
|
|
NONES if decoded_tokens is None else decoded_tokens[offset:offset_end]
|
|
)
|
|
|
|
# Update with the Logprob container for this pos.
|
|
append_logprobs_for_next_position(
|
|
self.prompt_logprobs,
|
|
token_ids[pos],
|
|
prompt_logprobs[pos],
|
|
decoded_tokens_for_pos,
|
|
prompt_token_ranks[pos],
|
|
self.num_prompt_logprobs,
|
|
)
|
|
|
|
def pop_prompt_logprobs(self) -> PromptLogprobs | None:
|
|
"""Pop and return all request prompt logprobs
|
|
|
|
The logprobs processor aggregates prompt chunk logprobs
|
|
over one or more prefill chunks. This method returns
|
|
all prompt logprobs at once and then forgets them.
|
|
Ensures correct RequestOutputKind.DELTA semantics
|
|
wherein all prompt logprobs are returned at once at
|
|
the end of prefill.
|
|
|
|
Returns:
|
|
None if prompt logprobs are disabled for this request.
|
|
List of all prompt logprobs, otherwise.
|
|
"""
|
|
plp = self.prompt_logprobs
|
|
if plp:
|
|
self.prompt_logprobs = []
|
|
return plp
|
|
|
|
def update_from_output(self, output: EngineCoreOutput) -> None:
|
|
if output.new_logprobs is not None:
|
|
self._update_sample_logprobs(output.new_logprobs)
|
|
if output.new_prompt_logprobs_tensors is not None:
|
|
self._update_prompt_logprobs(output.new_prompt_logprobs_tensors)
|