vllm/tests/entrypoints/llm/test_score.py
Maximilien de Bayser 2554b27baa
[V0 Deprecation] Remove pooling model support in V0 (#23434)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-08-29 00:04:02 -07:00

61 lines
1.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import weakref
import pytest
import torch
from vllm import LLM, PoolingParams
from vllm.distributed import cleanup_dist_env_and_memory
from ...models.utils import softmax
MODEL_NAME = "tomaarsen/Qwen3-Reranker-0.6B-seq-cls"
@pytest.fixture(scope="module")
def llm():
# pytest caches the fixture so we use weakref.proxy to
# enable garbage collection
llm = LLM(model=MODEL_NAME,
max_num_batched_tokens=32768,
tensor_parallel_size=1,
gpu_memory_utilization=0.75,
enforce_eager=True,
seed=0)
yield weakref.proxy(llm)
del llm
cleanup_dist_env_and_memory()
@pytest.mark.skip_global_cleanup
def test_pooling_params(llm: LLM):
def get_outputs(activation):
text_1 = "What is the capital of France?"
text_2 = "The capital of France is Paris."
outputs = llm.score(
text_1,
text_2,
pooling_params=PoolingParams(activation=activation),
use_tqdm=False)
return torch.tensor([x.outputs.score for x in outputs])
default = get_outputs(activation=None)
w_activation = get_outputs(activation=True)
wo_activation = get_outputs(activation=False)
assert torch.allclose(default, w_activation,
atol=1e-2), "Default should use activation."
assert not torch.allclose(
w_activation, wo_activation,
atol=1e-2), "wo_activation should not use activation."
assert torch.allclose(
softmax(wo_activation), w_activation, atol=1e-2
), "w_activation should be close to activation(wo_activation)."