mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-28 08:05:16 +08:00
Signed-off-by: Abatom <abzhonghua@gmail.com> Signed-off-by: Jumiar <liuanqim10@126.com> Signed-off-by: Zyann7 <zyann7@outlook.com> Co-authored-by: Jumiar <liuanqim10@126.com> Co-authored-by: Zyann7 <zyann7@outlook.com> Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
721 lines
25 KiB
Python
721 lines
25 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
from collections.abc import Iterable
|
|
from itertools import islice
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from vllm.attention.backends.abstract import AttentionType
|
|
from vllm.attention.layer import Attention
|
|
from vllm.config import (
|
|
CacheConfig,
|
|
VllmConfig,
|
|
get_current_vllm_config,
|
|
str_dtype_to_torch_dtype,
|
|
)
|
|
from vllm.distributed import (
|
|
get_ep_group,
|
|
get_pp_group,
|
|
get_tensor_model_parallel_rank,
|
|
get_tensor_model_parallel_world_size,
|
|
tensor_model_parallel_all_gather,
|
|
)
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.fused_moe import FusedMoE
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import (
|
|
default_weight_loader,
|
|
maybe_remap_kv_scale_name,
|
|
)
|
|
from vllm.model_executor.models.utils import sequence_parallel_chunk
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import MixtureOfExperts, SupportsPP
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
PPMissingLayer,
|
|
extract_layer_index,
|
|
is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory,
|
|
make_layers,
|
|
maybe_prefix,
|
|
)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class MiMoV2MLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
hidden_act: str,
|
|
quant_config: QuantizationConfig | None = None,
|
|
reduce_results: bool = True,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
hidden_size,
|
|
[intermediate_size] * 2,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.gate_up_proj",
|
|
)
|
|
self.down_proj = RowParallelLinear(
|
|
intermediate_size,
|
|
hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
reduce_results=reduce_results,
|
|
prefix=f"{prefix}.down_proj",
|
|
)
|
|
if hidden_act != "silu":
|
|
raise ValueError(
|
|
f"Unsupported activation: {hidden_act}. Only silu is supported for now."
|
|
)
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, x):
|
|
gate_up, _ = self.gate_up_proj(x)
|
|
x = self.act_fn(gate_up)
|
|
x, _ = self.down_proj(x)
|
|
return x
|
|
|
|
|
|
class MiMoV2MoE(nn.Module):
|
|
def __init__(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
is_nextn: bool = False,
|
|
):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_text_config
|
|
parallel_config = vllm_config.parallel_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
self.ep_group = get_ep_group().device_group
|
|
self.ep_rank = get_ep_group().rank_in_group
|
|
self.ep_size = self.ep_group.size()
|
|
self.n_routed_experts = config.n_routed_experts
|
|
|
|
self.is_sequence_parallel = parallel_config.use_sequence_parallel_moe
|
|
|
|
if self.tp_size > config.n_routed_experts:
|
|
raise ValueError(
|
|
f"Tensor parallel size {self.tp_size} is greater than "
|
|
f"the number of experts {config.n_routed_experts}."
|
|
)
|
|
|
|
if config.hidden_act != "silu":
|
|
raise ValueError(
|
|
f"Unsupported activation: {config.hidden_act}. "
|
|
"Only silu is supported for now."
|
|
)
|
|
|
|
vllm_config = get_current_vllm_config()
|
|
eplb_config = vllm_config.parallel_config.eplb_config
|
|
self.enable_eplb = parallel_config.enable_eplb
|
|
|
|
self.n_logical_experts = self.n_routed_experts
|
|
self.n_redundant_experts = eplb_config.num_redundant_experts
|
|
self.n_physical_experts = self.n_logical_experts + self.n_redundant_experts
|
|
self.n_local_physical_experts = self.n_physical_experts // self.ep_size
|
|
|
|
self.physical_expert_start = self.ep_rank * self.n_local_physical_experts
|
|
self.physical_expert_end = (
|
|
self.physical_expert_start + self.n_local_physical_experts
|
|
)
|
|
|
|
dtype = getattr(config, "moe_router_dtype", "float32")
|
|
self.gate_dtype = str_dtype_to_torch_dtype(dtype)
|
|
self.gate = nn.Linear(
|
|
config.hidden_size,
|
|
config.n_routed_experts,
|
|
bias=False,
|
|
dtype=self.gate_dtype,
|
|
)
|
|
self.gate.e_score_correction_bias = nn.Parameter(
|
|
torch.empty(config.n_routed_experts, dtype=self.gate_dtype)
|
|
)
|
|
|
|
self.experts = FusedMoE(
|
|
num_experts=self.n_routed_experts,
|
|
top_k=config.num_experts_per_tok,
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.moe_intermediate_size,
|
|
reduce_results=True,
|
|
renormalize=config.norm_topk_prob,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.experts",
|
|
e_score_correction_bias=self.gate.e_score_correction_bias,
|
|
enable_eplb=self.enable_eplb,
|
|
num_redundant_experts=self.n_redundant_experts,
|
|
is_sequence_parallel=self.is_sequence_parallel,
|
|
use_grouped_topk=True,
|
|
num_expert_group=config.n_group,
|
|
topk_group=config.topk_group,
|
|
scoring_func="sigmoid",
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
assert hidden_states.dim() <= 2, "MiMoV2MoE only supports 1D or 2D inputs"
|
|
is_input_1d = hidden_states.dim() == 1
|
|
num_tokens, hidden_dim = hidden_states.shape
|
|
hidden_states = hidden_states.view(-1, hidden_dim)
|
|
|
|
if self.is_sequence_parallel:
|
|
hidden_states = sequence_parallel_chunk(hidden_states)
|
|
|
|
if self.gate_dtype is not None:
|
|
gate_input = hidden_states.to(self.gate_dtype)
|
|
else:
|
|
gate_input = hidden_states
|
|
router_logits = self.gate(gate_input)
|
|
final_hidden_states = self.experts(
|
|
hidden_states=hidden_states, router_logits=router_logits
|
|
)
|
|
|
|
if self.is_sequence_parallel:
|
|
final_hidden_states = tensor_model_parallel_all_gather(
|
|
final_hidden_states, 0
|
|
)
|
|
final_hidden_states = final_hidden_states[:num_tokens]
|
|
|
|
return final_hidden_states.squeeze(0) if is_input_1d else final_hidden_states
|
|
|
|
|
|
class MiMoV2Attention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
num_kv_heads: int,
|
|
head_dim: int,
|
|
v_head_dim: int | None = None,
|
|
sliding_window_size: int = -1,
|
|
attention_bias: bool = False,
|
|
add_swa_attention_sink_bias: bool = False,
|
|
layer_id: int = 0,
|
|
rope_theta: float = 1000000,
|
|
max_position_embeddings: int = 32768,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
partial_rotary_factor: float = 1.0,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
self.layer_id = layer_id
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
self.total_num_heads = num_heads
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
|
|
self.total_num_kv_heads = num_kv_heads
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
|
|
self.head_dim = head_dim
|
|
|
|
self.v_head_dim = v_head_dim if v_head_dim is not None else head_dim
|
|
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.k_size = self.num_kv_heads * self.head_dim
|
|
self.v_size = self.num_kv_heads * self.v_head_dim
|
|
|
|
self.scaling = self.head_dim**-0.5
|
|
self.rope_theta = rope_theta
|
|
self.max_position_embeddings = max_position_embeddings
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
self.total_num_kv_heads,
|
|
bias=attention_bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
v_head_size=self.v_head_dim,
|
|
)
|
|
|
|
self.o_proj = RowParallelLinear(
|
|
self.total_num_heads * self.v_head_dim,
|
|
hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
reduce_results=True,
|
|
prefix=f"{prefix}.o_proj",
|
|
)
|
|
|
|
self.rotary_emb = get_rope(
|
|
head_size=self.head_dim,
|
|
max_position=max_position_embeddings,
|
|
rope_parameters={
|
|
"rope_type": "default",
|
|
"rope_theta": rope_theta,
|
|
"partial_rotary_factor": partial_rotary_factor,
|
|
},
|
|
)
|
|
|
|
self.attention_sink_bias = (
|
|
torch.nn.Parameter(torch.empty(self.num_heads), requires_grad=False)
|
|
if add_swa_attention_sink_bias
|
|
else None
|
|
)
|
|
|
|
sliding_window = sliding_window_size if sliding_window_size > -1 else None
|
|
self.attn = Attention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
per_layer_sliding_window=sliding_window,
|
|
attn_type=AttentionType.DECODER,
|
|
prefix=f"{prefix}.attn",
|
|
sinks=self.attention_sink_bias,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.k_size, self.v_size], dim=-1)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
|
|
v = v.view(-1, self.num_kv_heads, self.v_head_dim)
|
|
v = torch.nn.functional.pad(v, [0, self.head_dim - self.v_head_dim], value=0)
|
|
v = v.view(-1, self.num_kv_heads * self.head_dim)
|
|
|
|
attn_output = self.attn(q, k, v)
|
|
|
|
attn_output = attn_output.view(-1, self.num_heads, self.head_dim)[
|
|
..., : self.v_head_dim
|
|
].reshape(-1, self.num_heads * self.v_head_dim)
|
|
|
|
output, _ = self.o_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class MiMoV2FlashDecoderLayer(nn.Module):
|
|
def __init__(self, vllm_config: VllmConfig, prefix: str = "") -> None:
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_text_config
|
|
quant_config = vllm_config.quant_config
|
|
layer_id = extract_layer_index(prefix)
|
|
|
|
self.hidden_size = config.hidden_size
|
|
self.config = config
|
|
self.layer_id = layer_id
|
|
|
|
rope_theta = getattr(config, "rope_theta", 1000000)
|
|
max_position_embeddings = getattr(config, "max_position_embeddings", 32768)
|
|
|
|
if self.is_compressed_softmax_layer():
|
|
self.self_attn = MiMoV2Attention(
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.swa_num_attention_heads,
|
|
num_kv_heads=config.swa_num_key_value_heads,
|
|
head_dim=config.swa_head_dim,
|
|
v_head_dim=getattr(config, "swa_v_head_dim", None),
|
|
sliding_window_size=config.sliding_window_size,
|
|
attention_bias=config.attention_bias,
|
|
add_swa_attention_sink_bias=getattr(
|
|
config, "add_swa_attention_sink_bias", False
|
|
),
|
|
layer_id=layer_id,
|
|
rope_theta=getattr(config, "swa_rope_theta", rope_theta),
|
|
max_position_embeddings=max_position_embeddings,
|
|
quant_config=quant_config,
|
|
partial_rotary_factor=getattr(config, "partial_rotary_factor", 1.0),
|
|
prefix=f"{prefix}.self_attn",
|
|
)
|
|
else:
|
|
self.self_attn = MiMoV2Attention(
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
head_dim=config.head_dim,
|
|
v_head_dim=getattr(config, "v_head_dim", None),
|
|
sliding_window_size=-1, # normal attention
|
|
attention_bias=config.attention_bias,
|
|
layer_id=layer_id,
|
|
rope_theta=rope_theta,
|
|
max_position_embeddings=max_position_embeddings,
|
|
quant_config=quant_config,
|
|
partial_rotary_factor=getattr(config, "partial_rotary_factor", 1.0),
|
|
prefix=f"{prefix}.self_attn",
|
|
)
|
|
|
|
self.is_layer_sparse = self.is_moe_layer(layer_id)
|
|
if self.is_layer_sparse:
|
|
self.mlp = MiMoV2MoE(
|
|
vllm_config=vllm_config,
|
|
prefix=f"{prefix}.mlp",
|
|
)
|
|
else:
|
|
self.mlp = MiMoV2MLP(
|
|
hidden_size=self.hidden_size,
|
|
intermediate_size=config.intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp",
|
|
)
|
|
|
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.layernorm_epsilon)
|
|
self.post_attention_layernorm = RMSNorm(
|
|
config.hidden_size, eps=config.layernorm_epsilon
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
|
|
|
hidden_states = self.self_attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
)
|
|
|
|
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
|
hidden_states = self.mlp(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
def is_moe_layer(self, layer_idx: int) -> bool:
|
|
return (
|
|
hasattr(self.config, "moe_layer_freq")
|
|
and layer_idx >= 0
|
|
and not isinstance(self.config.moe_layer_freq, int)
|
|
and self.config.moe_layer_freq[layer_idx]
|
|
)
|
|
|
|
def is_compressed_softmax_layer(self) -> bool:
|
|
return self.config.hybrid_layer_pattern[self.layer_id] == 1
|
|
|
|
|
|
class MiMoV2Model(nn.Module):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config.get_text_config()
|
|
quant_config = vllm_config.quant_config
|
|
eplb_config = vllm_config.parallel_config.eplb_config
|
|
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.vocab_size = config.vocab_size
|
|
self.num_redundant_experts = eplb_config.num_redundant_experts
|
|
self.v_scale = getattr(config, "attention_value_scale", None)
|
|
|
|
if get_pp_group().is_first_rank or (
|
|
config.tie_word_embeddings and get_pp_group().is_last_rank
|
|
):
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.embed_tokens",
|
|
)
|
|
else:
|
|
self.embed_tokens = PPMissingLayer()
|
|
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
config.num_hidden_layers,
|
|
lambda prefix: MiMoV2FlashDecoderLayer(
|
|
vllm_config=vllm_config,
|
|
prefix=prefix,
|
|
),
|
|
prefix=f"{prefix}.layers",
|
|
)
|
|
|
|
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
|
|
["hidden_states", "residual"], config.hidden_size
|
|
)
|
|
if get_pp_group().is_last_rank:
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.layernorm_epsilon)
|
|
else:
|
|
self.norm = PPMissingLayer()
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.embed_input_ids(input_ids)
|
|
residual = None
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
residual = intermediate_tensors["residual"]
|
|
|
|
for idx, layer in enumerate(
|
|
islice(self.layers, self.start_layer, self.end_layer)
|
|
):
|
|
hidden_states, residual = layer(positions, hidden_states, residual)
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors(
|
|
{"hidden_states": hidden_states, "residual": residual}
|
|
)
|
|
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
|
|
return hidden_states
|
|
|
|
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
|
|
# Params for weights, fp8 weight scales, fp8 activation scales
|
|
# (param_name, weight_name, expert_id, shard_id)
|
|
return FusedMoE.make_expert_params_mapping(
|
|
ckpt_gate_proj_name="gate_proj",
|
|
ckpt_down_proj_name="down_proj",
|
|
ckpt_up_proj_name="up_proj",
|
|
num_experts=self.config.n_routed_experts,
|
|
num_redundant_experts=self.num_redundant_experts,
|
|
)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
]
|
|
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
|
loaded_params: set[str] = set()
|
|
expert_params_mapping = self.get_expert_mapping()
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
|
|
continue
|
|
if "mtp" in name:
|
|
continue
|
|
|
|
if self.quant_config is not None:
|
|
cache_scale_name = self.quant_config.get_cache_scale(name)
|
|
if cache_scale_name is not None and cache_scale_name in params_dict:
|
|
param = params_dict[cache_scale_name]
|
|
weight_loader = getattr(
|
|
param, "weight_loader", default_weight_loader
|
|
)
|
|
|
|
kv_scale = loaded_weight
|
|
if kv_scale.dim() > 0 and kv_scale.numel() > 1:
|
|
kv_scale = kv_scale.view(-1)[0]
|
|
|
|
weight_loader(param, kv_scale)
|
|
loaded_params.add(cache_scale_name)
|
|
continue
|
|
|
|
expert_matched = False
|
|
for param_name, weight_name, expert_id, shard_id in expert_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
|
|
name_rewritten = name.replace(weight_name, param_name)
|
|
|
|
if is_pp_missing_parameter(name_rewritten, self):
|
|
continue
|
|
|
|
if (
|
|
name_rewritten.endswith(".bias") or name_rewritten.endswith("_bias")
|
|
) and name_rewritten not in params_dict:
|
|
continue
|
|
|
|
if name_rewritten not in params_dict:
|
|
continue
|
|
|
|
param = params_dict[name_rewritten]
|
|
weight_loader = param.weight_loader
|
|
|
|
weight_loader(
|
|
param,
|
|
loaded_weight,
|
|
name_rewritten,
|
|
shard_id=shard_id,
|
|
expert_id=expert_id,
|
|
)
|
|
loaded_params.add(name_rewritten)
|
|
expert_matched = True
|
|
break
|
|
|
|
if expert_matched:
|
|
continue
|
|
|
|
stacked_matched = False
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name_rewritten = name.replace(weight_name, param_name)
|
|
|
|
if (
|
|
name_rewritten.endswith(".bias")
|
|
and name_rewritten not in params_dict
|
|
):
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name_rewritten, self):
|
|
continue
|
|
|
|
if name_rewritten not in params_dict:
|
|
continue
|
|
|
|
param = params_dict[name_rewritten]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
|
|
if param_name == "qkv_proj" and shard_id == "v":
|
|
v_scale = (
|
|
self.v_scale
|
|
if self.v_scale is not None
|
|
else getattr(self.config, "attention_value_scale", None)
|
|
)
|
|
if v_scale is not None and (
|
|
name.endswith("weight_scale_inv") or name.endswith(".bias")
|
|
):
|
|
loaded_weight *= float(v_scale)
|
|
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
loaded_params.add(name_rewritten)
|
|
|
|
stacked_matched = True
|
|
break
|
|
|
|
if stacked_matched:
|
|
continue
|
|
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
orig_name = name
|
|
mapped_name = maybe_remap_kv_scale_name(name, params_dict)
|
|
name = mapped_name if mapped_name is not None else orig_name
|
|
|
|
if name not in params_dict:
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
|
|
if "attention_sink_bias" in name:
|
|
total_heads = loaded_weight.shape[0]
|
|
heads_per_rank = total_heads // tp_size
|
|
head_start = tp_rank * heads_per_rank
|
|
narrow_weight = loaded_weight.narrow(0, head_start, heads_per_rank)
|
|
|
|
param.data.copy_(narrow_weight)
|
|
loaded_params.add(name)
|
|
else:
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
|
|
return loaded_params
|
|
|
|
|
|
class MiMoV2FlashForCausalLM(nn.Module, SupportsPP, MixtureOfExperts):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.model = MiMoV2Model(
|
|
vllm_config=vllm_config,
|
|
prefix=maybe_prefix(prefix, "model"),
|
|
)
|
|
|
|
if get_pp_group().is_last_rank:
|
|
self.lm_head = ParallelLMHead(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
else:
|
|
self.lm_head = PPMissingLayer()
|
|
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def set_aux_hidden_state_layers(self, layers: tuple[int, ...]) -> None:
|
|
self.model.aux_hidden_state_layers = layers
|
|
|
|
def get_eagle3_aux_hidden_state_layers(self) -> tuple[int, ...]:
|
|
num_layers = len(self.model.layers)
|
|
return (2, num_layers // 2, num_layers - 3)
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.embed_input_ids(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
hidden_states = self.model(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
logits = self.logits_processor(self.lm_head, hidden_states)
|
|
return logits
|
|
|
|
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
|
|
return self.model.get_expert_mapping()
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights)
|