mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-29 20:00:57 +08:00
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com> Signed-off-by: yewentao256 <zhyanwentao@126.com>
79 lines
2.1 KiB
Python
79 lines
2.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import logging
|
|
|
|
import torch
|
|
|
|
from vllm.triton_utils import triton
|
|
from vllm.utils import direct_register_custom_op
|
|
from vllm.utils.deep_gemm import fp8_gemm_nt
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def prepare_block_fp8_matmul_inputs(
|
|
A: torch.Tensor,
|
|
B: torch.Tensor,
|
|
As: torch.Tensor,
|
|
Bs: torch.Tensor,
|
|
block_size: list[int],
|
|
output_dtype: torch.dtype = torch.float16,
|
|
) -> tuple[int, int, int, torch.Tensor]:
|
|
assert len(block_size) == 2
|
|
block_n, block_k = block_size[0], block_size[1]
|
|
|
|
assert A.shape[-1] == B.shape[-1]
|
|
assert A.shape[:-1] == As.shape[:-1]
|
|
assert A.is_contiguous()
|
|
assert triton.cdiv(A.shape[-1], block_k) == As.shape[-1]
|
|
|
|
M = A.numel() // A.shape[-1]
|
|
|
|
assert B.ndim == 2
|
|
assert B.is_contiguous()
|
|
assert Bs.ndim == 2
|
|
N, K = B.shape
|
|
assert triton.cdiv(N, block_n) == Bs.shape[0]
|
|
assert triton.cdiv(K, block_k) == Bs.shape[1]
|
|
|
|
C_shape = A.shape[:-1] + (N, )
|
|
C = A.new_empty(C_shape, dtype=output_dtype)
|
|
|
|
return M, N, K, C
|
|
|
|
|
|
def w8a8_block_fp8_matmul_deepgemm(
|
|
A: torch.Tensor,
|
|
B: torch.Tensor,
|
|
As: torch.Tensor,
|
|
Bs: torch.Tensor,
|
|
block_size: list[int],
|
|
output_dtype: torch.dtype,
|
|
) -> torch.Tensor:
|
|
M, N, K, C = prepare_block_fp8_matmul_inputs(A, B, As, Bs, block_size,
|
|
output_dtype)
|
|
# Deepgemm only supports output tensor type as bfloat16
|
|
assert C.dtype == torch.bfloat16
|
|
fp8_gemm_nt((A, As), (B, Bs), C)
|
|
return C
|
|
|
|
|
|
def w8a8_block_fp8_matmul_deepgemm_fake(
|
|
A: torch.Tensor,
|
|
B: torch.Tensor,
|
|
As: torch.Tensor,
|
|
Bs: torch.Tensor,
|
|
block_size: list[int],
|
|
output_dtype: torch.dtype,
|
|
) -> torch.Tensor:
|
|
M, N, K, C = prepare_block_fp8_matmul_inputs(A, B, As, Bs, block_size,
|
|
output_dtype)
|
|
return C
|
|
|
|
|
|
direct_register_custom_op(
|
|
op_name="w8a8_block_fp8_matmul_deepgemm",
|
|
op_func=w8a8_block_fp8_matmul_deepgemm,
|
|
fake_impl=w8a8_block_fp8_matmul_deepgemm_fake,
|
|
)
|