vllm/vllm/attention/backends/abstract.py
2025-08-06 18:40:52 -07:00

331 lines
10 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from abc import ABC, abstractmethod
from contextlib import contextmanager
from dataclasses import dataclass, fields
from typing import (TYPE_CHECKING, Any, Dict, Generic, List, Optional,
Protocol, Set, Tuple, Type, TypeVar)
import torch
from vllm.model_executor.layers.quantization.utils.quant_utils import (
GroupShape)
from vllm.multimodal import MultiModalPlaceholderMap
if TYPE_CHECKING:
from vllm.worker.model_runner_base import (ModelRunnerBase,
ModelRunnerInputBase,
ModelRunnerInputBuilderBase)
class AttentionType:
"""
Attention type.
Use string to be compatible with `torch.compile`.
"""
# Decoder attention between previous layer Q/K/V
DECODER = "decoder"
# Encoder attention between previous layer Q/K/V for encoder-decoder
ENCODER = "encoder"
# Encoder attention between previous layer Q/K/V
ENCODER_ONLY = "encoder_only"
# Attention between dec. Q and enc. K/V for encoder-decoder
ENCODER_DECODER = "encoder_decoder"
class AttentionBackend(ABC):
"""Abstract class for attention backends."""
# For some attention backends, we allocate an output tensor before
# calling the custom op. When piecewise cudagraph is enabled, this
# makes sure the output tensor is allocated inside the cudagraph.
accept_output_buffer: bool = False
@staticmethod
@abstractmethod
def get_name() -> str:
raise NotImplementedError
@staticmethod
@abstractmethod
def get_impl_cls() -> Type["AttentionImpl"]:
raise NotImplementedError
@staticmethod
@abstractmethod
def get_metadata_cls() -> Type["AttentionMetadata"]:
raise NotImplementedError
@staticmethod
@abstractmethod
def get_state_cls() -> Type["AttentionState"]:
raise NotImplementedError
@classmethod
def make_metadata(cls, *args, **kwargs) -> "AttentionMetadata":
return cls.get_metadata_cls()(*args, **kwargs)
@staticmethod
@abstractmethod
def get_builder_cls() -> Type["AttentionMetadataBuilder"]:
raise NotImplementedError
@staticmethod
@abstractmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> Tuple[int, ...]:
raise NotImplementedError
@staticmethod
def get_kv_cache_stride_order() -> Tuple[int, ...]:
raise NotImplementedError
@staticmethod
@abstractmethod
def swap_blocks(
src_kv_cache: torch.Tensor,
dst_kv_cache: torch.Tensor,
src_to_dst: torch.Tensor,
) -> None:
raise NotImplementedError
@staticmethod
@abstractmethod
def copy_blocks(
kv_caches: List[torch.Tensor],
src_to_dists: torch.Tensor,
) -> None:
raise NotImplementedError
def advance_step(self, model_input: "ModelRunnerInputBase",
sampled_token_ids: Optional[torch.Tensor],
block_size: int, num_seqs: int, num_queries: int) -> None:
raise NotImplementedError
@classmethod
def full_cls_name(cls) -> tuple[str, str]:
return (cls.__module__, cls.__qualname__)
@dataclass
class AttentionMetadata:
"""Attention metadata for prefill and decode batched together."""
# Total number of prefill requests.
num_prefills: int
# Number of prefill tokens.
num_prefill_tokens: int
# Number of decode tokens. Note that it is equivalent to the number of
# decode requests.
num_decode_tokens: int
# (num_tokens,). The indices of the token slots that input tokens will be
# stored into. E.g., if `slot_mapping` is [35, 2, 17] and the block size
# is 16, the three tokens are stored in the 3rd slot in block 2, 2nd slot
# in block 0, and 1st slot in block 1, respectively.
slot_mapping: torch.Tensor
# The index maps that relate multi-modal embeddings to the corresponding
# placeholders.
#
# N.B. These aren't really related to attention and don't belong on this
# type -- this is just a temporary solution to make them available to
# `model_executable`.
multi_modal_placeholder_index_maps: Optional[Dict[
str, MultiModalPlaceholderMap.IndexMap]]
# Enable/disable KV scales calculation. This is so that we can disable the
# calculation until after prefill and cuda graph capture.
enable_kv_scales_calculation: bool
@property
@abstractmethod
def prefill_metadata(self) -> Optional["AttentionMetadata"]:
"""Return the attention metadata that's required to run prefill
attention."""
pass
@property
@abstractmethod
def decode_metadata(self) -> Optional["AttentionMetadata"]:
"""Return the attention metadata that's required to run decode
attention."""
pass
def asdict_zerocopy(self,
skip_fields: Optional[Set[str]] = None
) -> Dict[str, Any]:
"""Similar to dataclasses.asdict, but avoids deepcopying."""
if skip_fields is None:
skip_fields = set()
# Note that if we add dataclasses as fields, they will need
# similar handling.
return {
field.name: getattr(self, field.name)
for field in fields(self) if field.name not in skip_fields
}
T = TypeVar("T", bound=AttentionMetadata)
class AttentionState(ABC, Generic[T]):
"""Holds attention backend-specific objects reused during the
lifetime of the model runner."""
@abstractmethod
def __init__(self, runner: "ModelRunnerBase"):
...
@abstractmethod
@contextmanager
def graph_capture(self, max_batch_size: int):
"""Context manager used when capturing CUDA graphs."""
yield
@abstractmethod
def graph_clone(self, batch_size: int) -> "AttentionState[T]":
"""Clone attention state to save in CUDA graph metadata."""
...
@abstractmethod
def graph_capture_get_metadata_for_batch(
self,
batch_size: int,
is_encoder_decoder_model: bool = False) -> T:
"""Get attention metadata for CUDA graph capture of batch_size."""
...
@abstractmethod
def get_graph_input_buffers(
self,
attn_metadata: T,
is_encoder_decoder_model: bool = False) -> Dict[str, Any]:
"""Get attention-specific input buffers for CUDA graph capture."""
...
@abstractmethod
def prepare_graph_input_buffers(
self,
input_buffers: Dict[str, Any],
attn_metadata: T,
is_encoder_decoder_model: bool = False) -> None:
"""In-place modify input buffers dict for CUDA graph replay."""
...
@abstractmethod
def begin_forward(self, model_input: "ModelRunnerInputBase") -> None:
"""Prepare state for forward pass."""
...
class AttentionMetadataBuilder(ABC, Generic[T]):
"""Abstract class for attention metadata builders."""
@abstractmethod
def __init__(self, input_builder: "ModelRunnerInputBuilderBase") -> None:
"""Create the builder, remember some configuration and parameters."""
raise NotImplementedError
@abstractmethod
def prepare(self) -> None:
"""Prepare for one batch."""
raise NotImplementedError
@abstractmethod
def build(self, seq_lens: List[int], query_lens: List[int],
cuda_graph_pad_size: int, batch_size: int) -> T:
"""Build attention metadata with on-device tensors."""
raise NotImplementedError
class AttentionLayer(Protocol):
_q_scale: torch.Tensor
_k_scale: torch.Tensor
_v_scale: torch.Tensor
_k_scale_float: float
_v_scale_float: float
_prob_scale: torch.Tensor
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
...
class AttentionImpl(ABC, Generic[T]):
@abstractmethod
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: Optional[int] = None,
alibi_slopes: Optional[List[float]] = None,
sliding_window: Optional[int] = None,
kv_cache_dtype: str = "auto",
logits_soft_cap: Optional[float] = None,
attn_type: str = AttentionType.DECODER,
kv_sharing_target_layer_name: Optional[str] = None,
) -> None:
raise NotImplementedError
@abstractmethod
def forward(
self,
layer: AttentionLayer,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: T,
output: Optional[torch.Tensor] = None,
output_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
raise NotImplementedError
def fused_output_quant_supported(self, dtype: torch.dtype, static: bool,
group_shape: GroupShape):
"""
Does this attention implementation support fused output quantization.
This is used by the AttnFusionPass to only fuse output quantization
onto implementations that support it.
TODO(luka) merge parameters into QuantDescriptor
:param dtype: quantized dtype
:param static: static or dynamic quantization
:param group_shape: quant group shape.
:return: is fusion supported for this type of quantization
"""
return False
class MLAAttentionImpl(AttentionImpl[T], Generic[T]):
@abstractmethod
def forward(
self,
layer: AttentionLayer,
hidden_states_or_cq: torch.Tensor,
kv_c_normed: torch.Tensor,
k_pe: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: T,
output: Optional[torch.Tensor] = None,
output_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor:
raise NotImplementedError
def is_quantized_kv_cache(kv_cache_dtype: str) -> bool:
return kv_cache_dtype != "auto"