vllm/vllm/compilation/wrapper.py
Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

130 lines
5.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import os
import sys
from abc import abstractmethod
from contextlib import contextmanager
from types import CodeType
from typing import Callable, List, Optional
import torch
import vllm.envs as envs
from vllm.config import CompilationLevel, get_current_vllm_config
from vllm.logger import init_logger
logger = init_logger(__name__)
class TorchCompileWrapperWithCustomDispatcher:
"""
A wrapper class for torch.compile, with a custom dispatch logic.
Subclasses should:
1. Implement the forward method
2. Implement the dispatch logic in the __call__ method
It can use `self.compiled_codes` to access the compiled bytecode,
and `with self.dispatch_to_code(index):` to dispatch to
the compiled code.
3. Implement the `__init__` method to determine how to call
`torch.compile` over the forward method.
"""
def __init__(self,
compiled_callable: Optional[Callable] = None,
compilation_level: int = 0):
vllm_config = get_current_vllm_config()
self.vllm_config = vllm_config
if compiled_callable is None:
# default compilation settings
# compiling the forward method
backend = vllm_config.compilation_config.init_backend(vllm_config)
compiled_callable = torch.compile(
self.forward,
fullgraph=envs.VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE,
backend=backend)
self.compiled_callable = compiled_callable
self.original_code_object = self.__class__.forward.__code__
self.compiled_codes: List[CodeType] = []
torch._dynamo.convert_frame.register_bytecode_hook(self.bytecode_hook)
# read the env var to determine whether to use the custom dispatcher
# subclasses can use this to switch between the custom dispatcher
# and the default Dynamo guard mechanism.
self.use_custom_dispatcher: bool = \
compilation_level >= CompilationLevel.DYNAMO_ONCE
def __call__(self, *args, **kwargs):
"""Implement the dispatch logic here, beyond the torch.compile level.
NOTE: this function can have additional arguments beyond the forward
method, for directly dispatching to the compiled code.
"""
return self.compiled_callable(*args, **kwargs)
@abstractmethod
def forward(self, *args, **kwargs):
...
def bytecode_hook(self, old_code: CodeType, new_code: CodeType):
"""Hook to save the compiled bytecode for direct execution."""
if old_code is not self.original_code_object:
return
# code borrowed from https://github.com/thuml/depyf/blob/f4ad79fadee27ea113b4c75202db1eb1a11c0dbc/depyf/explain/enable_debugging.py#L25
frame = sys._getframe()
while frame and frame.f_back:
frame = frame.f_back
code_name = frame.f_code.co_name
file_name = frame.f_code.co_filename.split(os.path.sep)[-1]
if code_name == "_compile" and file_name == "convert_frame.py":
break
frame = frame.f_locals["frame"]
assert frame.f_code == old_code
if frame.f_locals["self"] is not self:
return
self.compiled_codes.append(new_code)
local_cache_dir = self.vllm_config.compilation_config.local_cache_dir
if isinstance(local_cache_dir, str):
decompiled_file = os.path.join(local_cache_dir,
"transformed_code.py")
if not os.path.exists(decompiled_file):
try:
# usually the decompilation will succeed for most models,
# as we guarantee a full-graph compilation in Dynamo.
# but there's no 100% guarantee, since decompliation is
# not a reversible process.
import depyf
src = depyf.decompile(new_code)
with open(decompiled_file, "w") as f:
f.write(src)
logger.debug("Dynamo transformed code saved to %s",
decompiled_file)
except Exception:
pass
if self.vllm_config.compilation_config.use_cudagraph and \
"update" in new_code.co_names:
import depyf
src = depyf.decompile(new_code)
msg = "Assigning / modifying buffers of nn.Module during forward pass is not allowed when using cudagraph inside the compiler because it will cause silent errors. Please use eager mode or fix the code. The following code contains clues about which buffer is being modified (please search for the usage of the function `update`):\n" + src # noqa
raise RuntimeError(msg)
@contextmanager
def dispatch_to_code(self, index: int):
"""Context manager to dispatch to the compiled code.
Why does this work? Because Dynamo guarantees that the compiled
bytecode has exactly the same arguments, cell variables, and free
variables as the original code. Therefore we can directly switch
the code object in the function and call it.
See https://dev-discuss.pytorch.org/t/what-is-the-relationship-requirement-among-original-bytecode-transformed-bytecode-and-bytecode-returned-by-hooks-in-dynamo/1693/7 for more details.
""" # noqa
self.__class__.forward.__code__ = self.compiled_codes[index]
yield
self.__class__.forward.__code__ = self.original_code_object