Jee Jee Li 1eaff27815
[V0 deprecation] Remove long context LoRA (#21169)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-07-19 02:15:41 -07:00

137 lines
5.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import TYPE_CHECKING, Optional, Union
import torch
if TYPE_CHECKING:
# avoid circuit import
from vllm.lora.layers import LoRAMapping
def compute_meta(
token_lora_tensor: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, int, int, int, bool]:
"""
Get the information required for the sgmv kernel. With the features:
1. If consecutive requests in the batch use the same LoRA, this function
will combine them into a single request, improving sgmv kernel inference
performance.
2. At the beginning of each prefill stage inference, recalculations are
needed based on the input, but only once.
"""
lora_indices_tensor, seq_length_tensor = torch.unique_consecutive(
token_lora_tensor, return_counts=True)
cum_result = torch.cumsum(seq_length_tensor, dim=0)
b_seq_start_tensor = torch.zeros_like(seq_length_tensor)
b_seq_start_tensor[1:].copy_(cum_result[:-1])
max_length = seq_length_tensor.max().item()
token_nums = seq_length_tensor.sum().item()
batch_size = lora_indices_tensor.size(0)
no_lora = False
# -1 means no lora should be applied. Use `no_lora` to determine whether
# the current step requires LoRA. If LoRA is not needed, the prefill stage
# does not need to launch the triton kernel, which can improve performance
if batch_size == 1 and lora_indices_tensor == -1:
no_lora = True
return (b_seq_start_tensor, seq_length_tensor, lora_indices_tensor,
batch_size, max_length, token_nums, no_lora)
# TODO see if this can be vectorized
def convert_mapping(
mapping: "LoRAMapping",
lora_index_to_id: list[Optional[int]],
max_loras: int,
vocab_size: int,
extra_vocab_size: int,
device: torch.device,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, list[int]]:
"""Converts LoRAMapping to index tensors.
Args:
mapping: LoRAMapping mapping rows in a batch to LoRA ids.
lora_index_to_id: List mapping LoRA ids to LoRA indices.
max_loras: Maximum number of LoRAs.
vocab_size: Model vocab size.
extra_vocab_size: Extra vocab size each LoRA can have.
Returns:
A tuple of tensors:
base_indices: Tensor of shape [batch_size] mapping batch rows to
LoRA indices.
sampler_indices: Tensor of shape [batch_size] mapping requests to
LoRA indices for sampler. For generation, this will be the
same as base_indices. For prefill, this will map requests
to LoRA indices.
sampler_indices_padded: Tensor of shape [batch_size] mapping
requests to LoRA indices for sampler with padding.
Same as sampler_indices, but -1 is replaced with
max_loras.
embeddings_indices: Tensor of shape [2, batch_size] mapping
requests to embedding indices. First row is for embeddings
added by the LoRAs, second row is for the LoRA.lora_a
embeddings.
indices_len: List of lengths of the above tensors. It contains
(base_indices, sampler_indices, sampler_indices_padded,
embeddings_indices).
"""
index_mapping_indices: list[int] = list(mapping.index_mapping).copy()
embedding_indices = index_mapping_indices.copy()
lora_indices = index_mapping_indices.copy()
prompt_mapping: list[int] = [
lora_index_to_id.index(x) if x > 0 else -1
for x in mapping.prompt_mapping
]
lora_idx = None
for i in range(len(index_mapping_indices)):
# TODO index can be slow. optimize
lora_idx = (lora_index_to_id.index(index_mapping_indices[i])
if index_mapping_indices[i] > 0 else -1)
embedding_indices[i] = lora_idx if index_mapping_indices[i] > 0 else 0
lora_indices[i] = lora_idx
indices_list: list[Union[list[int], torch.Tensor]] = [
index_mapping_indices,
lora_indices,
embedding_indices,
]
indices = torch.tensor(indices_list, dtype=torch.long, device=device)
prompt_mapping_tensor = torch.tensor(prompt_mapping,
dtype=torch.long,
device=device)
embeddings_indices = torch.stack([
indices[2] * extra_vocab_size,
indices[2] * (vocab_size + extra_vocab_size),
])
embeddings_indices = torch.where(embeddings_indices == -1, max_loras - 1,
embeddings_indices)
base_indices = indices[1]
sampler_indices = prompt_mapping_tensor
sampler_indices_padded = sampler_indices.clone()
sampler_indices_padded = torch.where(sampler_indices_padded == -1,
max_loras - 1, sampler_indices_padded)
sampler_indices_padded = torch.arange(
0, len(sampler_indices_padded), device=device, dtype=torch.long) + (
sampler_indices_padded * len(sampler_indices_padded))
# Contain length of indices tensors. Used to index into each tensor.
indices_len = [
base_indices.shape[-1],
sampler_indices.shape[-1],
sampler_indices_padded.shape[-1],
embeddings_indices.shape[-1],
]
return (
base_indices,
sampler_indices,
sampler_indices_padded,
embeddings_indices,
indices_len,
)