youkaichao 208b71bcc1
[Core][Distributed] refactor pynccl (#4591)
[Core][Distributed] refactor pynccl to hold multiple communicators (#4591)
2024-05-09 19:48:43 -07:00

259 lines
9.5 KiB
Python

# This file is a pure Python wrapper for the NCCL library.
# The main purpose is to use NCCL combined with CUDA graph.
# Before writing this script, we tried the following approach:
# 1. We tried to use `cupy`, it calls NCCL correctly, but `cupy` itself
# often gets stuck when initializing the NCCL communicator.
# 2. We tried to use `torch.distributed`, but `torch.distributed.all_reduce`
# contains many other potential cuda APIs, that are not allowed during
# capturing the CUDA graph. For further details, please check
# https://discuss.pytorch.org/t/pytorch-cudagraph-with-nccl-operation-failed/ .
#
# Another rejected idea is to write a C/C++ binding for NCCL. It is usually
# doable, but we often encounter issues related with nccl versions, and need
# to switch between different versions of NCCL. See
# https://github.com/NVIDIA/nccl/issues/1234 for more details.
# A C/C++ binding is not flexible enough to handle this. It requires
# recompilation of the code every time we want to switch between different
# versions. This current implementation, with a **pure** Python wrapper, is
# more flexible. We can easily switch between different versions of NCCL by
# changing the environment variable `VLLM_NCCL_SO_PATH`, or the `so_file`
# variable in the code.
import ctypes
import platform
from dataclasses import dataclass
from typing import Any, Dict, List, Optional
import torch
from torch.distributed import ReduceOp
from vllm.logger import init_logger
from vllm.utils import find_nccl_library, nccl_integrity_check
logger = init_logger(__name__)
# === export types and functions from nccl to Python ===
# for the original nccl definition, please check
# https://github.com/NVIDIA/nccl/blob/master/src/nccl.h.in
ncclResult_t = ctypes.c_int
ncclComm_t = ctypes.c_void_p
class ncclUniqueId(ctypes.Structure):
_fields_ = [("internal", ctypes.c_byte * 128)]
cudaStream_t = ctypes.c_void_p
buffer_type = ctypes.c_void_p
ncclDataType_t = ctypes.c_int
class ncclDataTypeEnum:
ncclInt8 = 0
ncclChar = 0
ncclUint8 = 1
ncclInt32 = 2
ncclInt = 2
ncclUint32 = 3
ncclInt64 = 4
ncclUint64 = 5
ncclFloat16 = 6
ncclHalf = 6
ncclFloat32 = 7
ncclFloat = 7
ncclFloat64 = 8
ncclDouble = 8
ncclBfloat16 = 9
ncclNumTypes = 10
@classmethod
def from_torch(cls, dtype: torch.dtype) -> int:
if dtype == torch.int8:
return cls.ncclInt8
if dtype == torch.uint8:
return cls.ncclUint8
if dtype == torch.int32:
return cls.ncclInt32
if dtype == torch.int64:
return cls.ncclInt64
if dtype == torch.float16:
return cls.ncclFloat16
if dtype == torch.float32:
return cls.ncclFloat32
if dtype == torch.float64:
return cls.ncclFloat64
if dtype == torch.bfloat16:
return cls.ncclBfloat16
raise ValueError(f"Unsupported dtype: {dtype}")
ncclRedOp_t = ctypes.c_int
class ncclRedOpTypeEnum:
ncclSum = 0
ncclProd = 1
ncclMax = 2
ncclMin = 3
ncclAvg = 4
ncclNumOps = 5
@classmethod
def from_torch(cls, op: ReduceOp) -> int:
if op == ReduceOp.SUM:
return cls.ncclSum
if op == ReduceOp.PRODUCT:
return cls.ncclProd
if op == ReduceOp.MAX:
return cls.ncclMax
if op == ReduceOp.MIN:
return cls.ncclMin
if op == ReduceOp.AVG:
return cls.ncclAvg
raise ValueError(f"Unsupported op: {op}")
@dataclass
class Function:
name: str
restype: Any
argtypes: List[Any]
class NCCLLibrary:
exported_functions = [
# const char* ncclGetErrorString(ncclResult_t result)
Function("ncclGetErrorString", ctypes.c_char_p, [ncclResult_t]),
# ncclResult_t ncclGetVersion(int *version);
Function("ncclGetVersion", ncclResult_t,
[ctypes.POINTER(ctypes.c_int)]),
# ncclResult_t ncclGetUniqueId(ncclUniqueId* uniqueId);
Function("ncclGetUniqueId", ncclResult_t,
[ctypes.POINTER(ncclUniqueId)]),
# ncclResult_t ncclCommInitRank(
# ncclComm_t* comm, int nranks, ncclUniqueId commId, int rank);
# note that ncclComm_t is a pointer type, so the first argument
# is a pointer to a pointer
Function("ncclCommInitRank", ncclResult_t, [
ctypes.POINTER(ncclComm_t), ctypes.c_int, ncclUniqueId,
ctypes.c_int
]),
# ncclResult_t ncclAllReduce(
# const void* sendbuff, void* recvbuff, size_t count,
# ncclDataType_t datatype, ncclRedOp_t op, ncclComm_t comm,
# cudaStream_t stream);
# note that cudaStream_t is a pointer type, so the last argument
# is a pointer
Function("ncclAllReduce", ncclResult_t, [
buffer_type, buffer_type, ctypes.c_size_t, ncclDataType_t,
ncclRedOp_t, ncclComm_t, cudaStream_t
]),
# be cautious! this is a collective call, it will block until all
# processes in the communicator have called this function.
# because Python object destruction can happen in random order,
# it is better not to call it at all.
# ncclResult_t ncclCommDestroy(ncclComm_t comm);
Function("ncclCommDestroy", ncclResult_t, [ncclComm_t]),
]
# class attribute to store the mapping from the path to the library
# to avoid loading the same library multiple times
path_to_library_cache: Dict[str, Any] = {}
# class attribute to store the mapping from library path
# to the corresponding dictionary
path_to_dict_mapping: Dict[str, Dict[str, Any]] = {}
def __init__(self, so_file: Optional[str] = None):
so_file = so_file or find_nccl_library()
try:
# load the library in another process.
# if it core dumps, it will not crash the current process
nccl_integrity_check(so_file)
except Exception as e:
logger.error(
"Failed to load NCCL library from %s ."
"It is expected if you are not running on NVIDIA/AMD GPUs."
"Otherwise, the nccl library might not exist, be corrupted "
"or it does not support the current platform %s."
"One solution is to download libnccl2 version 2.18 from "
"https://developer.download.nvidia.com/compute/cuda/repos/ "
"and extract the libnccl.so.2 file. If you already have the "
"library, please set the environment variable VLLM_NCCL_SO_PATH"
" to point to the correct nccl library path.", so_file,
platform.platform())
raise e
if so_file not in NCCLLibrary.path_to_dict_mapping:
lib = ctypes.CDLL(so_file)
NCCLLibrary.path_to_library_cache[so_file] = lib
self.lib = NCCLLibrary.path_to_library_cache[so_file]
if so_file not in NCCLLibrary.path_to_dict_mapping:
_funcs = {}
for func in NCCLLibrary.exported_functions:
f = getattr(self.lib, func.name)
f.restype = func.restype
f.argtypes = func.argtypes
_funcs[func.name] = f
NCCLLibrary.path_to_dict_mapping[so_file] = _funcs
self._funcs = NCCLLibrary.path_to_dict_mapping[so_file]
def ncclGetErrorString(self, result: ncclResult_t) -> str:
return self._funcs["ncclGetErrorString"](result).decode("utf-8")
def NCCL_CHECK(self, result: ncclResult_t) -> None:
if result != 0:
error_str = self.ncclGetErrorString(result)
raise RuntimeError(f"NCCL error: {error_str}")
def ncclGetVersion(self) -> str:
version = ctypes.c_int()
self.NCCL_CHECK(self._funcs["ncclGetVersion"](ctypes.byref(version)))
version_str = str(version.value)
# something like 21903 --> "2.19.3"
major = version_str[0].lstrip("0")
minor = version_str[1:3].lstrip("0")
patch = version_str[3:].lstrip("0")
return f"{major}.{minor}.{patch}"
def ncclGetUniqueId(self) -> ncclUniqueId:
unique_id = ncclUniqueId()
self.NCCL_CHECK(self._funcs["ncclGetUniqueId"](
ctypes.byref(unique_id)))
return unique_id
def ncclCommInitRank(self, world_size: int, unique_id: ncclUniqueId,
rank: int) -> ncclComm_t:
comm = ncclComm_t()
self.NCCL_CHECK(self._funcs["ncclCommInitRank"](ctypes.byref(comm),
world_size, unique_id,
rank))
return comm
def ncclAllReduce(self, sendbuff: buffer_type, recvbuff: buffer_type,
count: int, datatype: int, op: int, comm: ncclComm_t,
stream: cudaStream_t) -> None:
# `datatype` actually should be `ncclDataType_t`
# and `op` should be `ncclRedOp_t`
# both are aliases of `ctypes.c_int`
# when we pass int to a function, it will be converted to `ctypes.c_int`
# by ctypes automatically
self.NCCL_CHECK(self._funcs["ncclAllReduce"](sendbuff, recvbuff, count,
datatype, op, comm,
stream))
def ncclCommDestroy(self, comm: ncclComm_t) -> None:
self.NCCL_CHECK(self._funcs["ncclCommDestroy"](comm))
__all__ = [
"NCCLLibrary", "ncclDataTypeEnum", "ncclRedOpTypeEnum", "ncclUniqueId",
"ncclComm_t", "cudaStream_t", "buffer_type"
]