vllm/vllm/distributed/device_communicators/base_device_communicator.py

298 lines
10 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import threading
from weakref import WeakValueDictionary
import torch
import torch.distributed as dist
from torch.distributed import ProcessGroup
class Cache:
def __init__(self):
self._cache: WeakValueDictionary = WeakValueDictionary()
self._lock = threading.RLock() # Reentrant lock for thread safety
def get_or_create(self, kwargs, func):
# Create a hashable key from the kwargs
key = tuple(sorted((k, v) for k, v in kwargs.items()))
with self._lock:
instance = self._cache.get(key)
if instance is None:
instance = func(**kwargs)
self._cache[key] = instance
return instance
class All2AllManagerBase:
rank: int
world_size: int
def __init__(self, cpu_group):
self.cpu_group = cpu_group
# compute some common properties
from vllm.distributed.parallel_state import (
get_dp_group,
get_tp_group,
in_the_same_node_as,
)
# all2all lives in ep group, which is merged from dp and tp group
self.dp_group = get_dp_group()
self.tp_group = get_tp_group()
# no self.ep_group since self.ep_group is still in construction
# when we create this object
self.dp_rank = self.dp_group.rank_in_group
self.dp_world_size = self.dp_group.world_size
self.rank = dist.get_rank(cpu_group)
self.world_size = dist.get_world_size(cpu_group)
# all2all communication often has separate implementations for
# intra-node and inter-node communication
self.internode = not all(in_the_same_node_as(cpu_group, source_rank=0))
def get_handle(self, kwargs):
# get a handle for the all2all communication,
# based on the kwargs.
# different layers can have different configs,
# e.g. one layer has hidden size 1024, another has 2048.
# usually the underlying implementation caches the handle
# and reuse it for the same config.
raise NotImplementedError
def dispatch(
self,
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
is_sequence_parallel: bool = False,
):
raise NotImplementedError
def set_num_sms(self, num_sms: int):
pass
def max_sms_used(self) -> int | None:
return None # None means it could use the whole GPU
def combine(self, hidden_states: torch.Tensor, is_sequence_parallel: bool = False):
raise NotImplementedError
def destroy(self):
pass
class DeviceCommunicatorBase:
"""
Base class for device-specific communicator.
It can use the `cpu_group` to initialize the communicator.
If the device has PyTorch integration (PyTorch can recognize its
communication backend), the `device_group` will also be given.
"""
def __init__(
self,
cpu_group: ProcessGroup,
device: torch.device | None = None,
device_group: ProcessGroup | None = None,
unique_name: str = "",
):
self.device = device or torch.device("cpu")
self.cpu_group = cpu_group
self.device_group = device_group
self.unique_name = unique_name
self.rank = dist.get_rank(cpu_group)
self.world_size = dist.get_world_size(cpu_group)
self.ranks = dist.get_process_group_ranks(cpu_group)
self.global_rank = dist.get_rank()
self.global_world_size = dist.get_world_size()
self.rank_in_group = dist.get_group_rank(self.cpu_group, self.global_rank)
use_ep = False
all2all_backend = None
from vllm.config import get_current_vllm_config
config = get_current_vllm_config()
if config is not None:
# as long as we use data parallel (coupled data parallel
# where all data parallel ranks execute forward together),
# we initialize the all2all manager used in expert parallel.
use_ep = config.parallel_config.data_parallel_size > 1
all2all_backend = config.parallel_config.all2all_backend
self.is_ep_communicator = "ep" in unique_name
self.use_all2all = self.is_ep_communicator and use_ep
self.all2all_backend = all2all_backend
self.all2all_manager: All2AllManagerBase | None = None
def all_reduce(self, input_: torch.Tensor) -> torch.Tensor:
dist.all_reduce(input_, group=self.device_group)
return input_
def all_gather(self, input_: torch.Tensor, dim: int = -1) -> torch.Tensor:
if dim < 0:
# Convert negative dim to positive.
dim += input_.dim()
input_size = input_.size()
# NOTE: we have to use concat-style all-gather here,
# stack-style all-gather has compatibility issues with
# torch.compile . see https://github.com/pytorch/pytorch/issues/138795
output_size = (input_size[0] * self.world_size,) + input_size[1:]
# Allocate output tensor.
output_tensor = torch.empty(
output_size, dtype=input_.dtype, device=input_.device
)
# All-gather.
dist.all_gather_into_tensor(output_tensor, input_, group=self.device_group)
# Reshape
output_tensor = output_tensor.reshape((self.world_size,) + input_size)
output_tensor = output_tensor.movedim(0, dim)
output_tensor = output_tensor.reshape(
input_size[:dim]
+ (self.world_size * input_size[dim],)
+ input_size[dim + 1 :]
)
return output_tensor
def all_gatherv(
self,
input_: torch.Tensor | list[torch.Tensor],
dim: int = 0,
sizes: list[int] | None = None,
) -> torch.Tensor | list[torch.Tensor]:
raise NotImplementedError
def reduce_scatter(self, input_: torch.Tensor, dim: int = -1) -> torch.Tensor:
world_size = self.world_size
# Bypass the function if we are using only 1 GPU.
if world_size == 1:
return input_
assert -input_.dim() <= dim < input_.dim(), (
f"Invalid dim ({dim}) for input tensor with shape {input_.size()}"
)
if dim < 0:
# Convert negative dim to positive.
dim += input_.dim()
# Note: This will produce an incorrect answer if we don't make
# the input_tensor contiguous. Possible bug in reduce_scatter_tensor?
input_tensor = input_.movedim(0, dim).contiguous()
assert input_tensor.shape[0] % world_size == 0
chunk_size = input_tensor.shape[0] // world_size
output_shape = (chunk_size,) + input_tensor.shape[1:]
output_tensor = torch.empty(
output_shape, dtype=input_tensor.dtype, device=input_tensor.device
)
# Perform reduce-scatter operation
torch.distributed.reduce_scatter_tensor(
output_tensor, input_tensor, group=self.device_group
)
# Reshape before returning
return output_tensor.movedim(0, dim).contiguous()
def reduce_scatterv(
self, input_: torch.Tensor, dim: int = -1, sizes: list[int] | None = None
) -> torch.Tensor:
raise NotImplementedError
def gather(
self, input_: torch.Tensor, dst: int = 0, dim: int = -1
) -> torch.Tensor | None:
"""
NOTE: We assume that the input tensor is on the same device across
all the ranks.
NOTE: `dst` is the local rank of the destination rank.
"""
world_size = self.world_size
assert -input_.dim() <= dim < input_.dim(), (
f"Invalid dim ({dim}) for input tensor with shape {input_.size()}"
)
if dim < 0:
# Convert negative dim to positive.
dim += input_.dim()
# Allocate output tensor.
if self.rank_in_group == dst:
gather_list = [torch.empty_like(input_) for _ in range(world_size)]
else:
gather_list = None
# Gather.
torch.distributed.gather(
input_, gather_list, dst=self.ranks[dst], group=self.device_group
)
if self.rank_in_group == dst:
output_tensor = torch.cat(gather_list, dim=dim)
else:
output_tensor = None
return output_tensor
def send(self, tensor: torch.Tensor, dst: int | None = None) -> None:
"""Sends a tensor to the destination rank in a blocking way"""
"""NOTE: `dst` is the local rank of the destination rank."""
if dst is None:
dst = (self.rank_in_group + 1) % self.world_size
torch.distributed.send(tensor, self.ranks[dst], self.device_group)
def recv(
self, size: torch.Size, dtype: torch.dtype, src: int | None = None
) -> torch.Tensor:
"""Receives a tensor from the source rank."""
"""NOTE: `src` is the local rank of the source rank."""
if src is None:
src = (self.rank_in_group - 1) % self.world_size
tensor = torch.empty(size, dtype=dtype, device=self.device)
torch.distributed.recv(tensor, self.ranks[src], self.device_group)
return tensor
def destroy(self):
pass
def prepare_communication_buffer_for_model(self, model: torch.nn.Module) -> None:
"""
Prepare the communication buffer for the model.
"""
if not self.is_ep_communicator:
return
moe_modules = [
module
for module in model.modules()
# TODO(bnell): Should use isinstance but can't. Maybe search for
# presence of quant_method.maybe_init_modular_kernel?
if (
module.__class__.__name__ == "FusedMoE"
or module.__class__.__name__ == "SharedFusedMoE"
)
]
for module in moe_modules:
module.maybe_init_modular_kernel()
def dispatch(
self,
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
is_sequence_parallel: bool = False,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Dispatch the hidden states and router logits to the appropriate device.
This is a no-op in the base class.
"""
return hidden_states, router_logits
def combine(
self, hidden_states: torch.Tensor, is_sequence_parallel: bool = False
) -> torch.Tensor:
"""
Combine the hidden states and router logits from the appropriate device.
This is a no-op in the base class.
"""
return hidden_states