mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 03:04:54 +08:00
Signed-off-by: zhangsicheng5 <zhangsicheng5@huawei.com> Signed-off-by: QiuChunshuo <qiuchunshuo@huawei.com> Signed-off-by: Qiu <qiuchunshuo@huawei.com> Co-authored-by: QiuChunshuo <qiuchunshuo@huawei.com>
267 lines
7.3 KiB
Python
267 lines
7.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""
|
|
WARNING: This test runs in both single-node (4 GPUs) and multi-node
|
|
(2 node with 2 GPUs each) modes. If the test only uses 2 GPUs, it is
|
|
important to set the distributed backend to "mp" to avoid Ray scheduling
|
|
all workers in a node other than the head node, which can cause the test
|
|
to fail.
|
|
"""
|
|
|
|
import json
|
|
import os
|
|
from dataclasses import dataclass
|
|
from typing import Literal, NamedTuple
|
|
|
|
import pytest
|
|
|
|
from vllm.config.model import RunnerOption
|
|
from vllm.logger import init_logger
|
|
|
|
from ..models.registry import HF_EXAMPLE_MODELS
|
|
from ..utils import compare_two_settings, create_new_process_for_each_test
|
|
|
|
logger = init_logger("test_context_parallel")
|
|
|
|
VLLM_MULTI_NODE = os.getenv("VLLM_MULTI_NODE", "0") == "1"
|
|
|
|
|
|
class ParallelSetup(NamedTuple):
|
|
tp_size: int
|
|
pp_size: int
|
|
dcp_size: int
|
|
dcp_kv_cache_interleave_size: int
|
|
eager_mode: bool
|
|
chunked_prefill: bool
|
|
|
|
|
|
class CPTestOptions(NamedTuple):
|
|
multi_node_only: bool
|
|
load_format: str | None = None
|
|
|
|
|
|
@dataclass
|
|
class CPTestSettings:
|
|
parallel_setups: list[ParallelSetup]
|
|
distributed_backends: list[str]
|
|
runner: RunnerOption
|
|
test_options: CPTestOptions
|
|
|
|
@staticmethod
|
|
def detailed(
|
|
*,
|
|
tp_base: int = 4,
|
|
pp_base: int = 1,
|
|
dcp_base: int = 1,
|
|
dcp_kv_cache_interleave_size: int = 1,
|
|
multi_node_only: bool = False,
|
|
runner: RunnerOption = "auto",
|
|
load_format: str | None = None,
|
|
):
|
|
parallel_setups = []
|
|
for eager_mode_val in [False]:
|
|
for pp_multiplier in [1]:
|
|
for dcp_multiplier in [0.5, 1]:
|
|
for chunked_prefill_val in [True]:
|
|
parallel_setups.append(
|
|
ParallelSetup(
|
|
tp_size=tp_base,
|
|
pp_size=pp_multiplier * pp_base,
|
|
dcp_size=int(dcp_multiplier * tp_base),
|
|
dcp_kv_cache_interleave_size=dcp_kv_cache_interleave_size,
|
|
eager_mode=eager_mode_val,
|
|
chunked_prefill=chunked_prefill_val,
|
|
)
|
|
)
|
|
return CPTestSettings(
|
|
parallel_setups=parallel_setups,
|
|
distributed_backends=["mp"],
|
|
runner=runner,
|
|
test_options=CPTestOptions(
|
|
multi_node_only=multi_node_only, load_format=load_format
|
|
),
|
|
)
|
|
|
|
def iter_params(self, model_id: str):
|
|
opts = self.test_options
|
|
|
|
for parallel_setup in self.parallel_setups:
|
|
for backend in self.distributed_backends:
|
|
yield (
|
|
model_id,
|
|
parallel_setup,
|
|
backend,
|
|
self.runner,
|
|
opts,
|
|
)
|
|
|
|
|
|
def _compare_cp_with_tp(
|
|
model_id: str,
|
|
parallel_setup: ParallelSetup,
|
|
distributed_backend: str,
|
|
runner: RunnerOption,
|
|
test_options: CPTestOptions,
|
|
num_gpus_available: int,
|
|
*,
|
|
method: Literal["generate"],
|
|
is_multimodal: bool,
|
|
):
|
|
(
|
|
tp_size,
|
|
pp_size,
|
|
dcp_size,
|
|
dcp_kv_cache_interleave_size,
|
|
eager_mode,
|
|
chunked_prefill,
|
|
) = parallel_setup
|
|
|
|
multi_node_only, load_format = test_options
|
|
|
|
model_info = HF_EXAMPLE_MODELS.find_hf_info(model_id)
|
|
model_info.check_transformers_version(on_fail="skip")
|
|
|
|
trust_remote_code = model_info.trust_remote_code
|
|
tokenizer_mode = model_info.tokenizer_mode
|
|
hf_overrides = model_info.hf_overrides
|
|
|
|
if load_format == "dummy":
|
|
# Avoid OOM
|
|
text_overrides = {
|
|
"num_hidden_layers": 4,
|
|
"hidden_size": 512,
|
|
"intermediate_size": 800,
|
|
"num_attention_heads": 4,
|
|
"num_key_value_heads": 1,
|
|
}
|
|
|
|
if is_multimodal:
|
|
hf_overrides.update({"text_config": text_overrides})
|
|
else:
|
|
hf_overrides.update(text_overrides)
|
|
else:
|
|
model_info.check_available_online(on_fail="skip")
|
|
|
|
if num_gpus_available < tp_size * pp_size:
|
|
pytest.skip(f"Need at least {tp_size} x {pp_size} GPUs")
|
|
if VLLM_MULTI_NODE and distributed_backend == "mp":
|
|
pytest.skip(
|
|
"Skipping multi-node pipeline parallel test for "
|
|
"multiprocessing distributed backend"
|
|
)
|
|
if multi_node_only and not VLLM_MULTI_NODE:
|
|
pytest.skip("Not in multi-node setting")
|
|
|
|
common_args = [
|
|
# use half precision for speed and memory savings in CI environment
|
|
"--dtype",
|
|
"bfloat16",
|
|
"--max-model-len",
|
|
"2048",
|
|
"--max-num-seqs",
|
|
"8",
|
|
]
|
|
if chunked_prefill:
|
|
common_args.append("--enable-chunked-prefill")
|
|
if eager_mode:
|
|
common_args.append("--enforce-eager")
|
|
if runner != "auto":
|
|
common_args.extend(["--runner", runner])
|
|
if trust_remote_code:
|
|
common_args.append("--trust-remote-code")
|
|
if tokenizer_mode:
|
|
common_args.extend(["--tokenizer-mode", tokenizer_mode])
|
|
if load_format:
|
|
common_args.extend(["--load-format", load_format])
|
|
if hf_overrides:
|
|
common_args.extend(["--hf-overrides", json.dumps(hf_overrides)])
|
|
|
|
cp_args = [
|
|
*common_args,
|
|
"--tensor-parallel-size",
|
|
str(tp_size),
|
|
"--pipeline-parallel-size",
|
|
str(pp_size),
|
|
"--decode-context-parallel-size",
|
|
str(dcp_size),
|
|
"--dcp-kv-cache-interleave-size",
|
|
str(dcp_kv_cache_interleave_size),
|
|
"--distributed-executor-backend",
|
|
distributed_backend,
|
|
]
|
|
|
|
tp_args = [
|
|
*common_args,
|
|
"--tensor-parallel-size",
|
|
str(tp_size),
|
|
"--pipeline-parallel-size",
|
|
str(pp_size),
|
|
"--distributed-executor-backend",
|
|
distributed_backend,
|
|
]
|
|
|
|
compare_two_settings(
|
|
model_id,
|
|
cp_args,
|
|
tp_args,
|
|
method=method,
|
|
max_wait_seconds=720,
|
|
)
|
|
|
|
|
|
CP_TEXT_GENERATION_MODELS = {
|
|
"deepseek-ai/DeepSeek-V2-Lite-Chat": [
|
|
CPTestSettings.detailed(),
|
|
CPTestSettings.detailed(tp_base=2),
|
|
CPTestSettings.detailed(tp_base=2, dcp_kv_cache_interleave_size=64),
|
|
],
|
|
"bigcode/gpt_bigcode-santacoder": [
|
|
CPTestSettings.detailed(),
|
|
CPTestSettings.detailed(tp_base=2),
|
|
],
|
|
}
|
|
|
|
CP_TEST_MODELS = [
|
|
# TODO support other models
|
|
# [LANGUAGE GENERATION]
|
|
"deepseek-ai/DeepSeek-V2-Lite-Chat",
|
|
"bigcode/gpt_bigcode-santacoder",
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
(
|
|
"model_id",
|
|
"parallel_setup",
|
|
"distributed_backend",
|
|
"runner",
|
|
"test_options",
|
|
),
|
|
[
|
|
params
|
|
for model_id, settings in CP_TEXT_GENERATION_MODELS.items()
|
|
for setting in settings
|
|
for params in setting.iter_params(model_id)
|
|
if model_id in CP_TEST_MODELS
|
|
],
|
|
)
|
|
@create_new_process_for_each_test()
|
|
def test_cp_generation(
|
|
model_id: str,
|
|
parallel_setup: ParallelSetup,
|
|
distributed_backend: str,
|
|
runner: RunnerOption,
|
|
test_options: CPTestOptions,
|
|
num_gpus_available,
|
|
):
|
|
_compare_cp_with_tp(
|
|
model_id,
|
|
parallel_setup,
|
|
distributed_backend,
|
|
runner,
|
|
test_options,
|
|
num_gpus_available,
|
|
method="generate",
|
|
is_multimodal=False,
|
|
)
|