vllm/tests/multimodal/test_hasher.py
Staszek Paśko 22341b996e
Improve multimodal hasher performance for re-used Image prompts (#22825)
Signed-off-by: Staszek Pasko <staszek@gmail.com>
2025-08-15 12:32:56 +00:00

95 lines
3.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import uuid
from pathlib import Path
import numpy as np
import pytest
import torch
from PIL import Image, ImageDraw
from vllm.multimodal.hasher import MultiModalHasher
ASSETS_DIR = Path(__file__).parent / "assets"
assert ASSETS_DIR.exists()
# NOTE: Images that are the same visually are allowed to have the same hash
@pytest.mark.parametrize("mode_pair", [("1", "L"), ("RGBA", "CMYK")])
def test_hash_collision_image_mode(mode_pair):
mode1, mode2 = mode_pair
image1 = Image.new(mode1, size=(10, 10), color=1)
image2 = Image.new(mode2, size=(10, 10), color=1)
hasher = MultiModalHasher
assert hasher.hash_kwargs(image=image1) != hasher.hash_kwargs(image=image2)
def test_hash_collision_image_palette():
# These images differ only in Image.palette._palette
image1 = Image.open(ASSETS_DIR / "image1.png")
image2 = Image.open(ASSETS_DIR / "image2.png")
hasher = MultiModalHasher
assert hasher.hash_kwargs(image=image1) != hasher.hash_kwargs(image=image2)
def test_hash_collision_image_transpose():
image1 = Image.new("1", size=(10, 20))
ImageDraw.Draw(image1).line([(0, 0), (10, 0)])
image2 = Image.new("1", size=(20, 10))
ImageDraw.Draw(image2).line([(0, 0), (0, 10)])
hasher = MultiModalHasher
assert hasher.hash_kwargs(image=image1) != hasher.hash_kwargs(image=image2)
def test_hash_collision_tensor_shape():
# The hash should be different though the data is the same when flattened
arr1 = torch.zeros((5, 10, 20, 3))
arr2 = torch.zeros((10, 20, 5, 3))
hasher = MultiModalHasher
assert hasher.hash_kwargs(data=arr1) != hasher.hash_kwargs(data=arr2)
def test_hash_collision_array_shape():
# The hash should be different though the data is the same when flattened
arr1 = np.zeros((5, 10, 20, 3))
arr2 = np.zeros((10, 20, 5, 3))
hasher = MultiModalHasher
assert hasher.hash_kwargs(data=arr1) != hasher.hash_kwargs(data=arr2)
def test_hash_non_contiguous_array():
arr = np.arange(24).reshape(4, 6).T
assert not arr.flags.c_contiguous
arr_c = np.ascontiguousarray(arr)
assert arr_c.flags.c_contiguous
hasher = MultiModalHasher
# Both should be hashable and produce the same hashes
assert hasher.hash_kwargs(data=arr) == hasher.hash_kwargs(data=arr_c)
def test_hash_image_exif_id():
# Test that EXIF ImageId tag can be used to store UUID
# and the hasher will use that instead of the image data.
image1 = image2 = Image.new("1", size=(10, 20))
id = uuid.uuid4()
image1.getexif()[Image.ExifTags.Base.ImageID] = id
image2 = Image.open(ASSETS_DIR / "image1.png")
image2.getexif()[Image.ExifTags.Base.ImageID] = "Not a UUID"
image2a = Image.open(ASSETS_DIR / "image1.png")
hasher = MultiModalHasher
# first image has UUID in ImageID, so it should hash to that UUID
assert hasher.hash_kwargs(image=image1) == hasher.hash_kwargs(
image=id.bytes)
# second image has non-UUID in ImageID, so it should hash to the image data
assert hasher.hash_kwargs(image=image2) == hasher.hash_kwargs(
image=image2a)