vllm/tests/models/multimodal/pooling/test_prithvi_mae.py
mgazz 51d5e9be7d
[Core][Model] Terratorch backend integration (#23513)
Signed-off-by: Michele Gazzetti <michele.gazzetti1@ibm.com>
Signed-off-by: Christian Pinto <christian.pinto@ibm.com>
Co-authored-by: Christian Pinto <christian.pinto@ibm.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-09-04 00:22:41 -07:00

64 lines
1.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
from vllm.utils import set_default_torch_num_threads
from ....conftest import VllmRunner
def generate_test_mm_data():
mm_data = {
"pixel_values": torch.full((6, 512, 512), 1.0, dtype=torch.float16),
"location_coords": torch.full((1, 2), 1.0, dtype=torch.float16),
}
return mm_data
def _run_test(
vllm_runner: type[VllmRunner],
model: str,
) -> None:
prompt = [
{
# This model deals with no text input
"prompt_token_ids": [1],
"multi_modal_data": generate_test_mm_data(),
} for _ in range(10)
]
with (
set_default_torch_num_threads(1),
vllm_runner(
model,
runner="pooling",
dtype=torch.float16,
enforce_eager=True,
skip_tokenizer_init=True,
# Limit the maximum number of sequences to avoid the
# test going OOM during the warmup run
max_num_seqs=32,
) as vllm_model,
):
vllm_model.encode(prompt)
MODELS = ["mgazz/Prithvi-EO-2.0-300M-TL-Sen1Floods11"]
@pytest.mark.core_model
@pytest.mark.parametrize("model", MODELS)
def test_models_image(
hf_runner,
vllm_runner,
image_assets,
model: str,
) -> None:
_run_test(
vllm_runner,
model,
)