vllm/benchmarks/kernels/bench_nvfp4_quant.py
Michael Goin 06d490282f
[NVFP4][Perf] Tune NVFP4 input quant kernel for small batch size (#30897)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-12-21 09:41:57 -08:00

178 lines
5.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import copy
import itertools
import torch
from weight_shapes import WEIGHT_SHAPES
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from vllm.scalar_type import scalar_types
from vllm.triton_utils import triton
from vllm.utils.flashinfer import flashinfer_fp4_quantize
if not current_platform.has_device_capability(100):
raise RuntimeError("NVFP4 requires compute capability of 10.0 (Blackwell)")
FLOAT4_E2M1_MAX = scalar_types.float4_e2m1f.max()
FLOAT8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max
PROVIDER_CFGS = {
"vllm": dict(backend="vllm", enabled=True),
"flashinfer": dict(backend="flashinfer", enabled=True),
}
_enabled = [k for k, v in PROVIDER_CFGS.items() if v["enabled"]]
def compute_global_scale(tensor: torch.Tensor) -> torch.Tensor:
"""Compute global scale for FP4 quantization."""
amax = torch.abs(tensor).max().to(torch.float32)
return FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX / amax
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size"],
x_vals=[1, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096],
x_log=False,
line_arg="provider",
line_vals=_enabled,
line_names=_enabled,
ylabel="us (lower is better)",
plot_name="NVFP4 Input Quantization Latency (us)",
args={},
)
)
def benchmark(batch_size, provider, N, K):
M = batch_size
device = "cuda"
dtype = torch.bfloat16
# Create input tensor
a = torch.randn((M, K), device=device, dtype=dtype)
# Compute global scale for activation
a_global_scale = compute_global_scale(a)
quantiles = [0.5, 0.2, 0.8]
cfg = PROVIDER_CFGS[provider]
if cfg["backend"] == "vllm":
# vLLM's FP4 quantization
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: ops.scaled_fp4_quant(a, a_global_scale),
quantiles=quantiles,
)
elif cfg["backend"] == "flashinfer":
# FlashInfer's FP4 quantization
# Use is_sf_swizzled_layout=True to match vLLM's output format
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: flashinfer_fp4_quantize(
a, a_global_scale, is_sf_swizzled_layout=True
),
quantiles=quantiles,
)
# Convert ms to us for better readability at small batch sizes
to_us = lambda t_ms: t_ms * 1000
return to_us(ms), to_us(max_ms), to_us(min_ms)
def prepare_shapes(args):
out = []
for model, tp_size in itertools.product(args.models, args.tp_sizes):
for KN, tp_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
KN[tp_dim] //= tp_size
KN.append(model)
out.append(KN)
return out
def _test_accuracy_once(M: int, K: int, dtype: torch.dtype, device: str):
"""Test accuracy between vLLM and FlashInfer FP4 quantization."""
# Create input tensor
a = torch.randn((M, K), device=device, dtype=dtype)
# Compute global scale
a_global_scale = compute_global_scale(a)
# vLLM quantization
vllm_fp4, vllm_scale = ops.scaled_fp4_quant(a, a_global_scale)
# FlashInfer quantization (with swizzled layout to match vLLM's output)
flashinfer_fp4, flashinfer_scale = flashinfer_fp4_quantize(
a, a_global_scale, is_sf_swizzled_layout=True
)
flashinfer_scale = flashinfer_scale.view(torch.float8_e4m3fn)
# Compare outputs
torch.testing.assert_close(
vllm_fp4,
flashinfer_fp4,
)
print(f"M={M}, K={K}, dtype={dtype}: PASSED")
def test_accuracy():
"""Run accuracy tests across various shapes."""
print("\n" + "=" * 60)
print("Running accuracy tests: vLLM vs FlashInfer")
print("=" * 60)
device = "cuda"
dtype = torch.bfloat16
# Test various batch sizes and hidden dimensions
Ms = [1, 1024]
Ks = [4096]
for M in Ms:
for K in Ks:
_test_accuracy_once(M, K, dtype, device)
print("\nAll accuracy tests passed!")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Benchmark NVFP4 quantization: vLLM vs FlashInfer"
)
parser.add_argument(
"--models",
nargs="+",
type=str,
default=["meta-llama/Llama-3.1-8B-Instruct"],
choices=list(WEIGHT_SHAPES.keys()),
)
parser.add_argument("--tp-sizes", nargs="+", type=int, default=[1])
parser.add_argument(
"--save-path",
type=str,
default=None,
help="Path to save benchmark results",
)
parser.add_argument(
"--accuracy",
action="store_true",
help="Run accuracy tests",
)
args = parser.parse_args()
if args.accuracy:
test_accuracy()
for K, N, model in prepare_shapes(args):
print(f"\n{model}, N={N} K={K}")
benchmark.run(
print_data=True,
save_path=args.save_path,
N=N,
K=K,
)
print("\nBenchmark finished!")