mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-14 14:35:20 +08:00
Signed-off-by: Boyuan Feng <boyuan@meta.com> Signed-off-by: Boyuan Feng <fby.1994@gmail.com> Signed-off-by: boyuanfeng <boyuan@meta.com> Co-authored-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
370 lines
15 KiB
Python
370 lines
15 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import contextlib
|
|
import inspect
|
|
from typing import Callable, Optional, TypeVar, Union, overload
|
|
from unittest.mock import patch
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch._dynamo.symbolic_convert import InliningInstructionTranslator
|
|
|
|
from vllm.compilation.counter import compilation_counter
|
|
from vllm.compilation.wrapper import TorchCompileWrapperWithCustomDispatcher
|
|
from vllm.config import CompilationLevel, VllmConfig
|
|
from vllm.logger import init_logger
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.utils import resolve_obj_by_qualname, supports_dynamo
|
|
|
|
from .monitor import start_monitoring_torch_compile
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
IGNORE_COMPILE_KEY = "_ignore_compile_vllm"
|
|
|
|
_T = TypeVar("_T", bound=type[nn.Module])
|
|
|
|
|
|
def ignore_torch_compile(cls: _T) -> _T:
|
|
"""
|
|
A decorator to ignore support_torch_compile decorator
|
|
on the class. This is useful when a parent class has
|
|
a support_torch_compile decorator, but we don't want to
|
|
compile the class `cls` that inherits the parent class.
|
|
This only ignores compiling the forward of the class the
|
|
decorator is applied to.
|
|
|
|
If the parent has ignore_torch_compile but the child has
|
|
support_torch_compile, the child will still be compiled.
|
|
|
|
If the class has one or more submodules
|
|
that have support_torch_compile decorator applied, compile will
|
|
not be ignored for those submodules.
|
|
"""
|
|
setattr(cls, IGNORE_COMPILE_KEY, True)
|
|
return cls
|
|
|
|
|
|
def _should_ignore_torch_compile(cls) -> bool:
|
|
"""
|
|
Check if the class should be ignored for torch.compile.
|
|
"""
|
|
return getattr(cls, IGNORE_COMPILE_KEY, False)
|
|
|
|
|
|
@overload
|
|
def support_torch_compile(
|
|
*,
|
|
enable_if: Optional[Callable[[VllmConfig], bool]] = None,
|
|
) -> Callable[[_T], _T]:
|
|
...
|
|
|
|
|
|
@overload
|
|
def support_torch_compile(
|
|
*,
|
|
dynamic_arg_dims: Optional[dict[str, Union[int, list[int]]]],
|
|
) -> Callable[[_T], _T]:
|
|
...
|
|
|
|
|
|
@overload
|
|
def support_torch_compile(cls: _T) -> _T:
|
|
...
|
|
|
|
|
|
def support_torch_compile(
|
|
cls: Optional[_T] = None,
|
|
*,
|
|
dynamic_arg_dims: Optional[dict[str, Union[int, list[int]]]] = None,
|
|
enable_if: Optional[Callable[[VllmConfig], bool]] = None,
|
|
) -> Union[Callable[[_T], _T], _T]:
|
|
"""
|
|
A decorator to add support for compiling the forward method of a class.
|
|
|
|
Usage 1: use directly as a decorator without arguments:
|
|
|
|
```python
|
|
@support_torch_compile
|
|
class MyModel(nn.Module):
|
|
def forward(self, x: torch.Tensor, y: Optional[torch.Tensor]):
|
|
...
|
|
```
|
|
|
|
Usage 2: use as a decorator with arguments:
|
|
|
|
```python
|
|
@support_torch_compile(dynamic_arg_dims={"x": 0, "y": 0})
|
|
class MyModel(nn.Module):
|
|
def forward(self, x: torch.Tensor, y: Optional[torch.Tensor]):
|
|
...
|
|
```
|
|
|
|
`dynamic_arg_dims` is a dictionary that maps argument names to the dynamic
|
|
dimensions of the argument. The dynamic dimensions can be either a single
|
|
integer or a list of integers.
|
|
|
|
if `dynamic_arg_dims` is `None`, it is inferred from the type annotation
|
|
of the `forward` method, based on the following default rules:
|
|
|
|
- if the argument is annotated as `torch.Tensor` or
|
|
`Optional[torch.Tensor]`, the first dimension will be
|
|
marked as dynamic.
|
|
- if the argument is annotated as `IntermediateTensors`, the first
|
|
dimension of all the tensors in the intermediate tensors
|
|
will be marked as dynamic.
|
|
|
|
During runtime, when we actually mark dimensions of tensors,
|
|
it depends on the value of arguments:
|
|
|
|
- if it is a single integer (can be negative), the corresponding dimension
|
|
of the argument will be marked as dynamic.
|
|
- if it is `None`, ignored.
|
|
- if it is `IntermediateTensors`, all the tensors in the intermediate
|
|
tensors will be marked as dynamic.
|
|
- otherwise, it will raise an error.
|
|
|
|
NOTE: if an argument is `None`, it should always be passed as `None` during
|
|
the lifetime of the model, otherwise, it cannot be captured as a single
|
|
computation graph.
|
|
|
|
`enable_if` is a function that takes a `VllmConfig` object as input and
|
|
returns a boolean value indicating whether to compile the model or not.
|
|
This is useful if you want to compile the model only when certain
|
|
conditions are met.
|
|
"""
|
|
|
|
def cls_decorator_helper(cls: _T) -> _T:
|
|
# helper to pass `dynamic_arg_dims`` to `_support_torch_compile``
|
|
# to avoid too much indentation for `_support_torch_compile``
|
|
if not hasattr(cls, 'forward'):
|
|
raise TypeError("decorated class should have a forward method.")
|
|
sig = inspect.signature(cls.forward)
|
|
inferred_dynamic_arg_dims = dynamic_arg_dims
|
|
if inferred_dynamic_arg_dims is None:
|
|
inferred_dynamic_arg_dims = {}
|
|
for k, v in sig.parameters.items():
|
|
if v.annotation in [
|
|
torch.Tensor, Optional[torch.Tensor],
|
|
IntermediateTensors, Optional[IntermediateTensors]
|
|
]:
|
|
inferred_dynamic_arg_dims[k] = 0
|
|
|
|
logger.debug(("Inferred dynamic dimensions for "
|
|
"forward method of %s: %s"), cls,
|
|
list(inferred_dynamic_arg_dims.keys()))
|
|
|
|
if len(inferred_dynamic_arg_dims) == 0:
|
|
raise ValueError(
|
|
"No dynamic dimensions found in the forward method of "
|
|
f"{cls}. Please provide dynamic_arg_dims explicitly.")
|
|
|
|
for k in inferred_dynamic_arg_dims:
|
|
if k not in sig.parameters:
|
|
raise ValueError(
|
|
f"Argument {k} not found in the forward method of {cls}")
|
|
return _support_torch_compile(cls, inferred_dynamic_arg_dims,
|
|
enable_if)
|
|
|
|
if cls is not None:
|
|
# use `support_torch_compile` as a decorator without arguments
|
|
assert isinstance(cls, type)
|
|
return cls_decorator_helper(cls)
|
|
|
|
return cls_decorator_helper
|
|
|
|
|
|
def _support_torch_compile(
|
|
cls: _T,
|
|
dynamic_arg_dims: dict[str, Union[int, list[int]]],
|
|
enable_if: Optional[Callable[[VllmConfig], bool]] = None,
|
|
) -> _T:
|
|
"""
|
|
A decorator to add support for compiling the forward method of a class.
|
|
"""
|
|
if TorchCompileWrapperWithCustomDispatcher in cls.__bases__:
|
|
# support decorating multiple times
|
|
return cls
|
|
|
|
# take care of method resolution order
|
|
# make sure super().__init__ is called on the base class
|
|
# other than TorchCompileWrapperWithCustomDispatcher
|
|
cls.__bases__ = cls.__bases__ + (TorchCompileWrapperWithCustomDispatcher, )
|
|
|
|
old_init = cls.__init__
|
|
|
|
setattr(cls, IGNORE_COMPILE_KEY, False)
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = '', **kwargs):
|
|
old_init(self, vllm_config=vllm_config, prefix=prefix, **kwargs)
|
|
self.vllm_config = vllm_config
|
|
enable_compile = enable_if is None or enable_if(vllm_config)
|
|
# for CompilationLevel.DYNAMO_AS_IS , the upper level model runner
|
|
# will handle the compilation, so we don't need to do anything here.
|
|
self.do_not_compile = \
|
|
vllm_config.compilation_config.level in [
|
|
CompilationLevel.NO_COMPILATION, CompilationLevel.DYNAMO_AS_IS
|
|
] or not supports_dynamo() or _should_ignore_torch_compile(
|
|
self.__class__) or not enable_compile
|
|
if self.do_not_compile:
|
|
return
|
|
|
|
compilation_counter.num_models_seen += 1
|
|
TorchCompileWrapperWithCustomDispatcher.__init__(
|
|
self, compilation_level=vllm_config.compilation_config.level)
|
|
|
|
cls.__init__ = __init__
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
# torch.compiler.is_compiling() means we are inside the compilation
|
|
# e.g. TPU has the compilation logic in model runner, so we don't
|
|
# need to compile the model inside.
|
|
if self.do_not_compile or torch.compiler.is_compiling():
|
|
return self.forward(*args, **kwargs)
|
|
|
|
# the first compilation needs to have dynamic shapes marked
|
|
if len(self.compiled_codes) < 1:
|
|
sig = inspect.signature(self.__class__.forward)
|
|
bound_args = sig.bind(self, *args, **kwargs)
|
|
bound_args.apply_defaults()
|
|
for k, dims in dynamic_arg_dims.items():
|
|
arg = bound_args.arguments.get(k)
|
|
if arg is not None:
|
|
dims = [dims] if isinstance(dims, int) else dims
|
|
if isinstance(arg, torch.Tensor):
|
|
# In case dims is specified with negative indexing
|
|
dims = [
|
|
arg.ndim + dim if dim < 0 else dim for dim in dims
|
|
]
|
|
torch._dynamo.mark_dynamic(arg, dims)
|
|
elif isinstance(arg, IntermediateTensors):
|
|
for tensor in arg.tensors.values():
|
|
# In case dims is specified with negative indexing
|
|
dims = [
|
|
tensor.ndim + dim if dim < 0 else dim
|
|
for dim in dims
|
|
]
|
|
torch._dynamo.mark_dynamic(tensor, dims)
|
|
else:
|
|
raise ValueError(
|
|
"Unsupported dynamic dimensions"
|
|
f" {dims} for argument {k} with type {type(arg)}.")
|
|
# here, it is the starting point of the `torch.compile` process
|
|
start_monitoring_torch_compile(self.vllm_config)
|
|
logger.debug("Start compiling function %s",
|
|
self.original_code_object)
|
|
|
|
# if we don't use custom dispatcher, we can directly call the
|
|
# compiled function and let torch.compile handle the dispatching,
|
|
# with the overhead of guard evaluation and recompilation.
|
|
if len(self.compiled_codes) < 1 or not self.use_custom_dispatcher:
|
|
# it seems Dynamo reuse the compilation across instances,
|
|
# while we need to make sure the compiled code is not reused.
|
|
# we need to control all the compilation of the model.
|
|
torch._dynamo.eval_frame.remove_from_cache(
|
|
self.original_code_object)
|
|
|
|
# collect all relevant files traced by Dynamo,
|
|
# so that the compilation cache can trigger re-compilation
|
|
# properly when any of these files change.
|
|
|
|
# 1. the file containing the top-level forward function
|
|
self.vllm_config.compilation_config.traced_files.add(
|
|
self.original_code_object.co_filename)
|
|
|
|
# 2. every time Dynamo sees a function call, it will inline
|
|
# the function by calling InliningInstructionTranslator.inline_call
|
|
# we hijack this function to know all the functions called
|
|
# during Dynamo tracing, and their corresponding files
|
|
inline_call = InliningInstructionTranslator.inline_call
|
|
|
|
def patched_inline_call(parent, func, args, kwargs):
|
|
code = func.get_code()
|
|
self.vllm_config.compilation_config.traced_files.add(
|
|
code.co_filename)
|
|
return inline_call(parent, func, args, kwargs)
|
|
|
|
# Disable the C++ compilation of symbolic shape guards. C++-fication
|
|
# of symbolic shape guards can improve guard overhead. But, since
|
|
# vllm skip guards anyways, setting this flag to False can improve
|
|
# compile time.
|
|
dynamo_config_patches = {}
|
|
try:
|
|
_ = torch._dynamo.config.enable_cpp_symbolic_shape_guards
|
|
dynamo_config_patches[
|
|
"enable_cpp_symbolic_shape_guards"] = False
|
|
except AttributeError:
|
|
# Note: this config is not available in torch 2.6, we can skip
|
|
# if the config doesn't exist
|
|
logger.debug(
|
|
"enable_cpp_symbolic_shape_guards config not available")
|
|
|
|
with patch.object(InliningInstructionTranslator, 'inline_call',
|
|
patched_inline_call), torch._dynamo.config.patch(
|
|
**dynamo_config_patches
|
|
), maybe_use_cudagraph_partition_wrapper(
|
|
self.vllm_config):
|
|
output = self.compiled_callable(*args, **kwargs)
|
|
|
|
return output
|
|
|
|
# usually, capturing the model once is enough, and then we can
|
|
# dispatch to the compiled code directly, without going through
|
|
# the Dynamo guard mechanism.
|
|
with self.dispatch_to_code(0):
|
|
model_output = self.forward(*args, **kwargs)
|
|
return model_output
|
|
|
|
cls.__call__ = __call__
|
|
return cls
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def maybe_use_cudagraph_partition_wrapper(vllm_config: VllmConfig):
|
|
"""
|
|
Context manager to set/unset customized cudagraph partition wrappers.
|
|
|
|
If we're using Inductor-based graph partitioning, we currently have the
|
|
whole `fx.Graph` before Inductor lowering and and the piecewise
|
|
splitting happens after all graph passes and fusions. Here, we add
|
|
a custom hook for Inductor to wrap each partition with our static
|
|
graph wrapper class to maintain more control over static graph
|
|
capture and replay.
|
|
"""
|
|
from vllm.config import CUDAGraphMode
|
|
|
|
compilation_config = vllm_config.compilation_config
|
|
if (compilation_config.cudagraph_mode != CUDAGraphMode.NONE
|
|
and compilation_config.use_inductor_graph_partition):
|
|
from torch._inductor.utils import CUDAGraphWrapperMetadata
|
|
|
|
from vllm.compilation.cuda_graph import CUDAGraphOptions
|
|
from vllm.platforms import current_platform
|
|
|
|
static_graph_wrapper_class = resolve_obj_by_qualname(
|
|
current_platform.get_static_graph_wrapper_cls())
|
|
|
|
def customized_cudagraph_wrapper(f,
|
|
metadata: CUDAGraphWrapperMetadata):
|
|
partition_id = metadata.partition_index
|
|
num_partitions = metadata.num_partitions
|
|
return static_graph_wrapper_class(
|
|
runnable=f,
|
|
vllm_config=vllm_config,
|
|
runtime_mode=CUDAGraphMode.PIECEWISE,
|
|
cudagraph_options=CUDAGraphOptions(
|
|
debug_log_enable=partition_id == 0,
|
|
gc_disable=partition_id != 0,
|
|
weak_ref_output=partition_id == num_partitions - 1,
|
|
))
|
|
|
|
torch._inductor.utils.set_customized_partition_wrappers(
|
|
customized_cudagraph_wrapper)
|
|
|
|
yield
|
|
|
|
if (compilation_config.cudagraph_mode != CUDAGraphMode.NONE
|
|
and compilation_config.use_inductor_graph_partition):
|
|
torch._inductor.utils.set_customized_partition_wrappers(None)
|