mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-29 17:57:13 +08:00
439 lines
15 KiB
Python
439 lines
15 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||
# adapted from https://github.com/deepseek-ai/DeepSeek-OCR/blob/main/DeepSeek-OCR-master/DeepSeek-OCR-vllm/process/image_process.py
|
||
import math
|
||
|
||
import torch
|
||
import torchvision.transforms as T
|
||
from PIL import Image, ImageOps
|
||
from transformers import AutoProcessor, BatchFeature, LlamaTokenizerFast
|
||
from transformers.processing_utils import ProcessorMixin
|
||
|
||
# TODO(Isotr0py): change modes for variants
|
||
# see: https://github.com/deepseek-ai/DeepSeek-OCR/blob/8cf003d38821fa1b19c73da3bd1b0dc262ea8136/DeepSeek-OCR-master/DeepSeek-OCR-vllm/config.py#L1-L6
|
||
# Tiny: base_size = 512, image_size = 512, crop_mode = False
|
||
# Small: base_size = 640, image_size = 640, crop_mode = False
|
||
# Base: base_size = 1024, image_size = 1024, crop_mode = False
|
||
# Large: base_size = 1280, image_size = 1280, crop_mode = False
|
||
# Gundam: base_size = 1024, image_size = 640, crop_mode = True
|
||
BASE_SIZE = 1024
|
||
IMAGE_SIZE = 640
|
||
CROP_MODE = True
|
||
|
||
# TODO(Isotr0py): Expose as mm_kwargs
|
||
MIN_CROPS = 2
|
||
MAX_CROPS = 6 # max:9; If your GPU memory is small, it is recommended to set it to 6.
|
||
|
||
|
||
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
||
best_ratio_diff = float("inf")
|
||
best_ratio = (1, 1)
|
||
area = width * height
|
||
for ratio in target_ratios:
|
||
target_aspect_ratio = ratio[0] / ratio[1]
|
||
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
||
if ratio_diff < best_ratio_diff:
|
||
best_ratio_diff = ratio_diff
|
||
best_ratio = ratio
|
||
elif ratio_diff == best_ratio_diff:
|
||
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
||
best_ratio = ratio
|
||
return best_ratio
|
||
|
||
|
||
def calculate_aspect_ratios(
|
||
min_num: int = MIN_CROPS, max_num: int = MAX_CROPS
|
||
) -> list[tuple[int, int]]:
|
||
target_ratios: set[tuple[int, int]] = set(
|
||
(i, j)
|
||
for n in range(min_num, max_num + 1)
|
||
for i in range(1, n + 1)
|
||
for j in range(1, n + 1)
|
||
if i * j <= max_num and i * j >= min_num
|
||
)
|
||
sorted_target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
||
return sorted_target_ratios
|
||
|
||
|
||
def count_tiles(
|
||
orig_width,
|
||
orig_height,
|
||
min_num=MIN_CROPS,
|
||
max_num=MAX_CROPS,
|
||
image_size=640,
|
||
use_thumbnail=False,
|
||
):
|
||
aspect_ratio = orig_width / orig_height
|
||
|
||
# calculate the existing image aspect ratio
|
||
target_ratios = calculate_aspect_ratios(min_num, max_num)
|
||
|
||
# find the closest aspect ratio to the target
|
||
target_aspect_ratio = find_closest_aspect_ratio(
|
||
aspect_ratio, target_ratios, orig_width, orig_height, image_size
|
||
)
|
||
|
||
return target_aspect_ratio
|
||
|
||
|
||
def dynamic_preprocess(
|
||
image, min_num=MIN_CROPS, max_num=MAX_CROPS, image_size=640, use_thumbnail=False
|
||
):
|
||
orig_width, orig_height = image.size
|
||
aspect_ratio = orig_width / orig_height
|
||
|
||
# calculate the existing image aspect ratio
|
||
target_ratios = calculate_aspect_ratios(min_num, max_num)
|
||
|
||
# find the closest aspect ratio to the target
|
||
target_aspect_ratio = find_closest_aspect_ratio(
|
||
aspect_ratio, target_ratios, orig_width, orig_height, image_size
|
||
)
|
||
|
||
# calculate the target width and height
|
||
target_width = image_size * target_aspect_ratio[0]
|
||
target_height = image_size * target_aspect_ratio[1]
|
||
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
||
|
||
# resize the image
|
||
resized_img = image.resize((target_width, target_height))
|
||
processed_images = []
|
||
for i in range(blocks):
|
||
box = (
|
||
(i % (target_width // image_size)) * image_size,
|
||
(i // (target_width // image_size)) * image_size,
|
||
((i % (target_width // image_size)) + 1) * image_size,
|
||
((i // (target_width // image_size)) + 1) * image_size,
|
||
)
|
||
# split the image
|
||
split_img = resized_img.crop(box)
|
||
processed_images.append(split_img)
|
||
assert len(processed_images) == blocks
|
||
if use_thumbnail and len(processed_images) != 1:
|
||
thumbnail_img = image.resize((image_size, image_size))
|
||
processed_images.append(thumbnail_img)
|
||
return processed_images, target_aspect_ratio
|
||
|
||
|
||
class ImageTransform:
|
||
def __init__(
|
||
self,
|
||
mean: tuple[float, float, float] = (0.5, 0.5, 0.5),
|
||
std: tuple[float, float, float] = (0.5, 0.5, 0.5),
|
||
normalize: bool = True,
|
||
):
|
||
self.mean = mean
|
||
self.std = std
|
||
self.normalize = normalize
|
||
|
||
transform_pipelines = [T.ToTensor()]
|
||
|
||
if normalize:
|
||
transform_pipelines.append(T.Normalize(mean, std))
|
||
|
||
self.transform = T.Compose(transform_pipelines)
|
||
|
||
def __call__(self, pil_img: Image.Image):
|
||
x = self.transform(pil_img)
|
||
return x
|
||
|
||
|
||
class DeepseekOCRProcessor(ProcessorMixin):
|
||
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
|
||
attributes = ["tokenizer"]
|
||
|
||
def __init__(
|
||
self,
|
||
tokenizer: LlamaTokenizerFast,
|
||
patch_size: int = 16,
|
||
downsample_ratio: int = 4,
|
||
image_mean: tuple[float, float, float] = (0.5, 0.5, 0.5),
|
||
image_std: tuple[float, float, float] = (0.5, 0.5, 0.5),
|
||
normalize: bool = True,
|
||
image_token: str = "<image>",
|
||
pad_token: str = "<|▁pad▁|>",
|
||
add_special_token: bool = False,
|
||
sft_format: str = "deepseek",
|
||
mask_prompt: bool = True,
|
||
ignore_id: int = -100,
|
||
**kwargs,
|
||
):
|
||
self.image_size = IMAGE_SIZE
|
||
self.base_size = BASE_SIZE
|
||
self.patch_size = 16
|
||
self.image_mean = image_mean
|
||
self.image_std = image_std
|
||
self.normalize = normalize
|
||
self.downsample_ratio = 4
|
||
|
||
self.image_transform = ImageTransform(
|
||
mean=image_mean, std=image_std, normalize=normalize
|
||
)
|
||
|
||
self.tokenizer = tokenizer
|
||
self.tokenizer.padding_side = "left" # must set this,padding side with make a difference in batch inference # noqa: E501
|
||
|
||
# add the pad_token as special token to use 'tokenizer.pad_token'
|
||
# and 'tokenizer.pad_token_id'
|
||
if self.tokenizer.pad_token is None:
|
||
self.tokenizer.add_special_tokens({"pad_token": pad_token})
|
||
|
||
# add image token
|
||
self.image_token_id = self.tokenizer.vocab.get(image_token)
|
||
self.image_token = image_token
|
||
self.pad_token = pad_token
|
||
self.add_special_token = add_special_token
|
||
self.sft_format = sft_format
|
||
self.mask_prompt = mask_prompt
|
||
self.ignore_id = ignore_id
|
||
|
||
super().__init__(
|
||
tokenizer,
|
||
**kwargs,
|
||
)
|
||
|
||
@property
|
||
def bos_id(self):
|
||
return self.tokenizer.bos_token_id
|
||
|
||
@property
|
||
def eos_id(self):
|
||
return self.tokenizer.eos_token_id
|
||
|
||
@property
|
||
def pad_id(self):
|
||
return self.tokenizer.pad_token_id
|
||
|
||
def encode(self, text: str, bos: bool = True, eos: bool = False):
|
||
t = self.tokenizer.encode(text, add_special_tokens=False)
|
||
if bos:
|
||
t = [self.bos_id] + t
|
||
if eos:
|
||
t = t + [self.eos_id]
|
||
return t
|
||
|
||
def decode(self, t: list[int], **kwargs) -> str:
|
||
return self.tokenizer.decode(t, **kwargs)
|
||
|
||
def process_one(
|
||
self,
|
||
prompt: str,
|
||
images: list[Image.Image],
|
||
crop_mode: bool = CROP_MODE,
|
||
):
|
||
"""
|
||
|
||
Args:
|
||
prompt (str): the formatted prompt;
|
||
images (List[ImageType]): the list of images;
|
||
crop_mode (bool): if True, then crop the image;
|
||
|
||
Returns:
|
||
outputs (BaseProcessorOutput): the output of the processor,
|
||
- input_ids (torch.LongTensor): [N + image tokens]
|
||
- target_ids (torch.LongTensor): [N + image tokens]
|
||
- pixel_values (torch.FloatTensor): [n_patches, 3, H, W]
|
||
- image_id (int): the id of the image token
|
||
- num_image_tokens (List[int]): the number of image tokens
|
||
"""
|
||
|
||
assert prompt is not None and images is not None, (
|
||
"prompt and images must be used at the same time."
|
||
)
|
||
|
||
sft_format = prompt
|
||
|
||
(
|
||
input_ids,
|
||
pixel_values,
|
||
images_crop,
|
||
images_seq_mask,
|
||
images_spatial_crop,
|
||
num_image_tokens,
|
||
_,
|
||
) = self.tokenize_with_images(
|
||
conversation=sft_format,
|
||
images=images,
|
||
bos=True,
|
||
eos=True,
|
||
cropping=crop_mode,
|
||
)
|
||
|
||
prepare = BatchFeature(
|
||
data=dict(
|
||
input_ids=input_ids,
|
||
pixel_values=pixel_values,
|
||
images_crop=images_crop,
|
||
images_seq_mask=images_seq_mask,
|
||
images_spatial_crop=images_spatial_crop,
|
||
num_image_tokens=num_image_tokens,
|
||
),
|
||
tensor_type="pt",
|
||
)
|
||
return prepare
|
||
|
||
def __call__(
|
||
self,
|
||
*,
|
||
prompt: str,
|
||
images: list[Image.Image],
|
||
crop_mode: bool = CROP_MODE,
|
||
**kwargs,
|
||
):
|
||
prepare = self.process_one(
|
||
prompt=prompt,
|
||
images=images,
|
||
crop_mode=crop_mode,
|
||
)
|
||
|
||
return prepare
|
||
|
||
def tokenize_with_images(
|
||
self,
|
||
conversation: str,
|
||
images: list[Image.Image],
|
||
bos: bool = True,
|
||
eos: bool = True,
|
||
cropping: bool = True,
|
||
):
|
||
"""Tokenize text with <image> tags."""
|
||
|
||
assert conversation.count(self.image_token) == len(images)
|
||
text_splits = conversation.split(self.image_token)
|
||
images_list, images_crop_list, images_seq_mask, images_spatial_crop = (
|
||
[],
|
||
[],
|
||
[],
|
||
[],
|
||
)
|
||
image_shapes = []
|
||
num_image_tokens = []
|
||
tokenized_str = []
|
||
for text_sep, image in zip(text_splits, images):
|
||
tokenized_sep = self.encode(text_sep, bos=False, eos=False)
|
||
tokenized_str += tokenized_sep
|
||
images_seq_mask += [False] * len(tokenized_sep)
|
||
|
||
image_shapes.append(image.size)
|
||
|
||
images_crop_raw = []
|
||
if image.size[0] <= 640 and image.size[1] <= 640:
|
||
crop_ratio = [1, 1]
|
||
elif cropping:
|
||
images_crop_raw, crop_ratio = dynamic_preprocess(
|
||
image, image_size=IMAGE_SIZE
|
||
)
|
||
else:
|
||
crop_ratio = [1, 1]
|
||
|
||
if self.image_size <= 640 and not cropping:
|
||
image = image.resize((self.image_size, self.image_size))
|
||
|
||
global_view = ImageOps.pad(
|
||
image,
|
||
(self.base_size, self.base_size),
|
||
color=tuple(int(x * 255) for x in self.image_transform.mean),
|
||
)
|
||
images_list.append(self.image_transform(global_view))
|
||
|
||
num_width_tiles, num_height_tiles = crop_ratio
|
||
images_spatial_crop.append([num_width_tiles, num_height_tiles])
|
||
|
||
if num_width_tiles > 1 or num_height_tiles > 1:
|
||
for cropped_image in images_crop_raw:
|
||
images_crop_list.append(self.image_transform(cropped_image))
|
||
|
||
num_queries = math.ceil(
|
||
(self.image_size // self.patch_size) / self.downsample_ratio
|
||
)
|
||
num_queries_base = math.ceil(
|
||
(self.base_size // self.patch_size) / self.downsample_ratio
|
||
)
|
||
|
||
tokenized_image = (
|
||
[self.image_token_id] * num_queries_base + [self.image_token_id]
|
||
) * num_queries_base
|
||
tokenized_image += [self.image_token_id]
|
||
if num_width_tiles > 1 or num_height_tiles > 1:
|
||
local_row = [self.image_token_id] * (num_queries * num_width_tiles + 1)
|
||
tokenized_image += local_row * (num_queries * num_height_tiles)
|
||
tokenized_str += tokenized_image
|
||
images_seq_mask += [True] * len(tokenized_image)
|
||
num_image_tokens.append(len(tokenized_image))
|
||
|
||
"""process the last text split"""
|
||
tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False)
|
||
tokenized_str += tokenized_sep
|
||
images_seq_mask += [False] * len(tokenized_sep)
|
||
|
||
"""add the bos and eos tokens"""
|
||
if bos:
|
||
tokenized_str = [self.bos_id] + tokenized_str
|
||
images_seq_mask = [False] + images_seq_mask
|
||
if eos:
|
||
tokenized_str = tokenized_str + [self.eos_id]
|
||
images_seq_mask = images_seq_mask + [False]
|
||
|
||
assert len(tokenized_str) == len(images_seq_mask), (
|
||
f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} "
|
||
f"is not equal to images_seq_mask's length {len(images_seq_mask)}."
|
||
)
|
||
|
||
masked_tokenized_str = []
|
||
for token_index in tokenized_str:
|
||
if token_index != self.image_token_id:
|
||
masked_tokenized_str.append(token_index)
|
||
else:
|
||
masked_tokenized_str.append(self.ignore_id)
|
||
|
||
assert (
|
||
len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str)
|
||
), (
|
||
f"tokenized_str's length {len(tokenized_str)}, "
|
||
f"input_ids' length {len(masked_tokenized_str)}, "
|
||
f"images_seq_mask's length {len(images_seq_mask)}, are not equal."
|
||
)
|
||
|
||
input_ids = torch.LongTensor(tokenized_str)
|
||
target_ids = torch.LongTensor(masked_tokenized_str)
|
||
images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)
|
||
|
||
# set input_ids < 0 | input_ids == self.image_token_id as ignore_id
|
||
target_ids[(input_ids < 0) | (input_ids == self.image_token_id)] = (
|
||
self.ignore_id
|
||
)
|
||
input_ids[input_ids < 0] = self.pad_id
|
||
|
||
# Remove the ending eos token
|
||
assert input_ids[-1] == self.eos_id
|
||
input_ids = input_ids[:-1]
|
||
target_ids = target_ids[:-1]
|
||
images_seq_mask = images_seq_mask[:-1]
|
||
|
||
if len(images_list) == 0:
|
||
pixel_values = torch.zeros((0, 3, self.base_size, self.base_size))
|
||
images_spatial_crop = torch.zeros((0, 2), dtype=torch.long)
|
||
images_crop = torch.zeros((0, 3, self.image_size, self.image_size))
|
||
else:
|
||
pixel_values = torch.stack(images_list, dim=0)
|
||
images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)
|
||
if images_crop_list:
|
||
images_crop = torch.stack(images_crop_list, dim=0)
|
||
else:
|
||
images_crop = torch.zeros((0, 3, self.image_size, self.image_size))
|
||
|
||
input_ids = input_ids.unsqueeze(0)
|
||
|
||
return (
|
||
input_ids,
|
||
pixel_values,
|
||
images_crop,
|
||
images_seq_mask,
|
||
images_spatial_crop,
|
||
num_image_tokens,
|
||
image_shapes,
|
||
)
|
||
|
||
|
||
AutoProcessor.register("DeepseekOCRProcessor", DeepseekOCRProcessor)
|