2025-10-22 17:15:38 -07:00

439 lines
15 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# adapted from https://github.com/deepseek-ai/DeepSeek-OCR/blob/main/DeepSeek-OCR-master/DeepSeek-OCR-vllm/process/image_process.py
import math
import torch
import torchvision.transforms as T
from PIL import Image, ImageOps
from transformers import AutoProcessor, BatchFeature, LlamaTokenizerFast
from transformers.processing_utils import ProcessorMixin
# TODO(Isotr0py): change modes for variants
# see: https://github.com/deepseek-ai/DeepSeek-OCR/blob/8cf003d38821fa1b19c73da3bd1b0dc262ea8136/DeepSeek-OCR-master/DeepSeek-OCR-vllm/config.py#L1-L6
# Tiny: base_size = 512, image_size = 512, crop_mode = False
# Small: base_size = 640, image_size = 640, crop_mode = False
# Base: base_size = 1024, image_size = 1024, crop_mode = False
# Large: base_size = 1280, image_size = 1280, crop_mode = False
# Gundam: base_size = 1024, image_size = 640, crop_mode = True
BASE_SIZE = 1024
IMAGE_SIZE = 640
CROP_MODE = True
# TODO(Isotr0py): Expose as mm_kwargs
MIN_CROPS = 2
MAX_CROPS = 6 # max:9; If your GPU memory is small, it is recommended to set it to 6.
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float("inf")
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def calculate_aspect_ratios(
min_num: int = MIN_CROPS, max_num: int = MAX_CROPS
) -> list[tuple[int, int]]:
target_ratios: set[tuple[int, int]] = set(
(i, j)
for n in range(min_num, max_num + 1)
for i in range(1, n + 1)
for j in range(1, n + 1)
if i * j <= max_num and i * j >= min_num
)
sorted_target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
return sorted_target_ratios
def count_tiles(
orig_width,
orig_height,
min_num=MIN_CROPS,
max_num=MAX_CROPS,
image_size=640,
use_thumbnail=False,
):
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = calculate_aspect_ratios(min_num, max_num)
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size
)
return target_aspect_ratio
def dynamic_preprocess(
image, min_num=MIN_CROPS, max_num=MAX_CROPS, image_size=640, use_thumbnail=False
):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = calculate_aspect_ratios(min_num, max_num)
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size
)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images, target_aspect_ratio
class ImageTransform:
def __init__(
self,
mean: tuple[float, float, float] = (0.5, 0.5, 0.5),
std: tuple[float, float, float] = (0.5, 0.5, 0.5),
normalize: bool = True,
):
self.mean = mean
self.std = std
self.normalize = normalize
transform_pipelines = [T.ToTensor()]
if normalize:
transform_pipelines.append(T.Normalize(mean, std))
self.transform = T.Compose(transform_pipelines)
def __call__(self, pil_img: Image.Image):
x = self.transform(pil_img)
return x
class DeepseekOCRProcessor(ProcessorMixin):
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
attributes = ["tokenizer"]
def __init__(
self,
tokenizer: LlamaTokenizerFast,
patch_size: int = 16,
downsample_ratio: int = 4,
image_mean: tuple[float, float, float] = (0.5, 0.5, 0.5),
image_std: tuple[float, float, float] = (0.5, 0.5, 0.5),
normalize: bool = True,
image_token: str = "<image>",
pad_token: str = "<▁pad▁>",
add_special_token: bool = False,
sft_format: str = "deepseek",
mask_prompt: bool = True,
ignore_id: int = -100,
**kwargs,
):
self.image_size = IMAGE_SIZE
self.base_size = BASE_SIZE
self.patch_size = 16
self.image_mean = image_mean
self.image_std = image_std
self.normalize = normalize
self.downsample_ratio = 4
self.image_transform = ImageTransform(
mean=image_mean, std=image_std, normalize=normalize
)
self.tokenizer = tokenizer
self.tokenizer.padding_side = "left" # must set thispadding side with make a difference in batch inference # noqa: E501
# add the pad_token as special token to use 'tokenizer.pad_token'
# and 'tokenizer.pad_token_id'
if self.tokenizer.pad_token is None:
self.tokenizer.add_special_tokens({"pad_token": pad_token})
# add image token
self.image_token_id = self.tokenizer.vocab.get(image_token)
self.image_token = image_token
self.pad_token = pad_token
self.add_special_token = add_special_token
self.sft_format = sft_format
self.mask_prompt = mask_prompt
self.ignore_id = ignore_id
super().__init__(
tokenizer,
**kwargs,
)
@property
def bos_id(self):
return self.tokenizer.bos_token_id
@property
def eos_id(self):
return self.tokenizer.eos_token_id
@property
def pad_id(self):
return self.tokenizer.pad_token_id
def encode(self, text: str, bos: bool = True, eos: bool = False):
t = self.tokenizer.encode(text, add_special_tokens=False)
if bos:
t = [self.bos_id] + t
if eos:
t = t + [self.eos_id]
return t
def decode(self, t: list[int], **kwargs) -> str:
return self.tokenizer.decode(t, **kwargs)
def process_one(
self,
prompt: str,
images: list[Image.Image],
crop_mode: bool = CROP_MODE,
):
"""
Args:
prompt (str): the formatted prompt;
images (List[ImageType]): the list of images;
crop_mode (bool): if True, then crop the image;
Returns:
outputs (BaseProcessorOutput): the output of the processor,
- input_ids (torch.LongTensor): [N + image tokens]
- target_ids (torch.LongTensor): [N + image tokens]
- pixel_values (torch.FloatTensor): [n_patches, 3, H, W]
- image_id (int): the id of the image token
- num_image_tokens (List[int]): the number of image tokens
"""
assert prompt is not None and images is not None, (
"prompt and images must be used at the same time."
)
sft_format = prompt
(
input_ids,
pixel_values,
images_crop,
images_seq_mask,
images_spatial_crop,
num_image_tokens,
_,
) = self.tokenize_with_images(
conversation=sft_format,
images=images,
bos=True,
eos=True,
cropping=crop_mode,
)
prepare = BatchFeature(
data=dict(
input_ids=input_ids,
pixel_values=pixel_values,
images_crop=images_crop,
images_seq_mask=images_seq_mask,
images_spatial_crop=images_spatial_crop,
num_image_tokens=num_image_tokens,
),
tensor_type="pt",
)
return prepare
def __call__(
self,
*,
prompt: str,
images: list[Image.Image],
crop_mode: bool = CROP_MODE,
**kwargs,
):
prepare = self.process_one(
prompt=prompt,
images=images,
crop_mode=crop_mode,
)
return prepare
def tokenize_with_images(
self,
conversation: str,
images: list[Image.Image],
bos: bool = True,
eos: bool = True,
cropping: bool = True,
):
"""Tokenize text with <image> tags."""
assert conversation.count(self.image_token) == len(images)
text_splits = conversation.split(self.image_token)
images_list, images_crop_list, images_seq_mask, images_spatial_crop = (
[],
[],
[],
[],
)
image_shapes = []
num_image_tokens = []
tokenized_str = []
for text_sep, image in zip(text_splits, images):
tokenized_sep = self.encode(text_sep, bos=False, eos=False)
tokenized_str += tokenized_sep
images_seq_mask += [False] * len(tokenized_sep)
image_shapes.append(image.size)
images_crop_raw = []
if image.size[0] <= 640 and image.size[1] <= 640:
crop_ratio = [1, 1]
elif cropping:
images_crop_raw, crop_ratio = dynamic_preprocess(
image, image_size=IMAGE_SIZE
)
else:
crop_ratio = [1, 1]
if self.image_size <= 640 and not cropping:
image = image.resize((self.image_size, self.image_size))
global_view = ImageOps.pad(
image,
(self.base_size, self.base_size),
color=tuple(int(x * 255) for x in self.image_transform.mean),
)
images_list.append(self.image_transform(global_view))
num_width_tiles, num_height_tiles = crop_ratio
images_spatial_crop.append([num_width_tiles, num_height_tiles])
if num_width_tiles > 1 or num_height_tiles > 1:
for cropped_image in images_crop_raw:
images_crop_list.append(self.image_transform(cropped_image))
num_queries = math.ceil(
(self.image_size // self.patch_size) / self.downsample_ratio
)
num_queries_base = math.ceil(
(self.base_size // self.patch_size) / self.downsample_ratio
)
tokenized_image = (
[self.image_token_id] * num_queries_base + [self.image_token_id]
) * num_queries_base
tokenized_image += [self.image_token_id]
if num_width_tiles > 1 or num_height_tiles > 1:
local_row = [self.image_token_id] * (num_queries * num_width_tiles + 1)
tokenized_image += local_row * (num_queries * num_height_tiles)
tokenized_str += tokenized_image
images_seq_mask += [True] * len(tokenized_image)
num_image_tokens.append(len(tokenized_image))
"""process the last text split"""
tokenized_sep = self.encode(text_splits[-1], bos=False, eos=False)
tokenized_str += tokenized_sep
images_seq_mask += [False] * len(tokenized_sep)
"""add the bos and eos tokens"""
if bos:
tokenized_str = [self.bos_id] + tokenized_str
images_seq_mask = [False] + images_seq_mask
if eos:
tokenized_str = tokenized_str + [self.eos_id]
images_seq_mask = images_seq_mask + [False]
assert len(tokenized_str) == len(images_seq_mask), (
f"tokenize_with_images func: tokenized_str's length {len(tokenized_str)} "
f"is not equal to images_seq_mask's length {len(images_seq_mask)}."
)
masked_tokenized_str = []
for token_index in tokenized_str:
if token_index != self.image_token_id:
masked_tokenized_str.append(token_index)
else:
masked_tokenized_str.append(self.ignore_id)
assert (
len(tokenized_str) == len(images_seq_mask) == len(masked_tokenized_str)
), (
f"tokenized_str's length {len(tokenized_str)}, "
f"input_ids' length {len(masked_tokenized_str)}, "
f"images_seq_mask's length {len(images_seq_mask)}, are not equal."
)
input_ids = torch.LongTensor(tokenized_str)
target_ids = torch.LongTensor(masked_tokenized_str)
images_seq_mask = torch.tensor(images_seq_mask, dtype=torch.bool)
# set input_ids < 0 | input_ids == self.image_token_id as ignore_id
target_ids[(input_ids < 0) | (input_ids == self.image_token_id)] = (
self.ignore_id
)
input_ids[input_ids < 0] = self.pad_id
# Remove the ending eos token
assert input_ids[-1] == self.eos_id
input_ids = input_ids[:-1]
target_ids = target_ids[:-1]
images_seq_mask = images_seq_mask[:-1]
if len(images_list) == 0:
pixel_values = torch.zeros((0, 3, self.base_size, self.base_size))
images_spatial_crop = torch.zeros((0, 2), dtype=torch.long)
images_crop = torch.zeros((0, 3, self.image_size, self.image_size))
else:
pixel_values = torch.stack(images_list, dim=0)
images_spatial_crop = torch.tensor(images_spatial_crop, dtype=torch.long)
if images_crop_list:
images_crop = torch.stack(images_crop_list, dim=0)
else:
images_crop = torch.zeros((0, 3, self.image_size, self.image_size))
input_ids = input_ids.unsqueeze(0)
return (
input_ids,
pixel_values,
images_crop,
images_seq_mask,
images_spatial_crop,
num_image_tokens,
image_shapes,
)
AutoProcessor.register("DeepseekOCRProcessor", DeepseekOCRProcessor)