mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-21 21:15:56 +08:00
Signed-off-by: Chen Zhang <zhangch99@outlook.com> Signed-off-by: yewentao256 <zhyanwentao@126.com>
345 lines
12 KiB
Python
345 lines
12 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import copy
|
|
from dataclasses import dataclass, fields
|
|
from math import prod
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from typing_extensions import Self
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.logger import init_logger
|
|
from vllm.utils import cdiv, get_dtype_size
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class KVCacheSpec:
|
|
"""
|
|
A base class for specifying the KV cache format of one layer.
|
|
"""
|
|
|
|
# number of tokens in a block
|
|
block_size: int
|
|
|
|
@property
|
|
def page_size_bytes(self) -> int:
|
|
"""
|
|
The size of a page with `block_size` tokens in bytes.
|
|
|
|
Returns:
|
|
The page size
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def max_memory_usage_bytes(self, vllm_config: VllmConfig) -> int:
|
|
"""
|
|
The maximum possible memory usage of this KV cache in bytes.
|
|
|
|
Returns:
|
|
The KV cache size in bytes
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@classmethod
|
|
def merge(cls, specs: list[Self]) -> Self:
|
|
"""
|
|
Merge a list of KVCacheSpec objects into a single KVCacheSpec object.
|
|
"""
|
|
assert all(spec == specs[0] for spec in specs[1:]), (
|
|
"All layers in the same KV cache group must be the same.")
|
|
return copy.deepcopy(specs[0])
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class AttentionSpec(KVCacheSpec):
|
|
num_kv_heads: int
|
|
head_size: int
|
|
dtype: torch.dtype
|
|
use_mla: bool
|
|
|
|
@property
|
|
def page_size_bytes(self) -> int:
|
|
# For MLA we only store a single latent vector
|
|
coef = 1 if self.use_mla else 2
|
|
return coef * self.block_size * self.num_kv_heads * self.head_size \
|
|
* get_dtype_size(self.dtype)
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class FullAttentionSpec(AttentionSpec):
|
|
sliding_window: Optional[int] = None
|
|
attention_chunk_size: Optional[int] = None
|
|
"""
|
|
When hybrid allocator is disabled and the model contains both full
|
|
attention layers and sliding window attention layers, sliding
|
|
window attention are regarded as full attention in KV cache manager
|
|
(blocks are allocated for all tokens), while computed as sliding window
|
|
attention in model runner.
|
|
In this case, we use FullAttentionSpec and record the sliding window size.
|
|
Default to None for not using sliding window attention.
|
|
"""
|
|
|
|
def max_memory_usage_bytes(self, vllm_config: VllmConfig) -> int:
|
|
max_model_len = vllm_config.model_config.max_model_len
|
|
dcp_world_size = \
|
|
vllm_config.parallel_config.decode_context_parallel_size
|
|
# Note(hc): each dcp rank only need save
|
|
# (max_model_len//dcp_world_size) tokens locally.
|
|
if dcp_world_size > 1:
|
|
max_model_len = cdiv(max_model_len, dcp_world_size)
|
|
return cdiv(max_model_len, self.block_size) * self.page_size_bytes
|
|
|
|
@classmethod
|
|
def merge_window_sizes(cls, window_sizes: set[int]) -> Optional[int]:
|
|
if len(window_sizes) == 0:
|
|
return None
|
|
elif len(window_sizes) == 1:
|
|
return window_sizes.pop()
|
|
else:
|
|
raise ValueError(
|
|
"All attention layers in the same KV cache group must have the "
|
|
"same window size.")
|
|
|
|
@classmethod
|
|
def merge(cls, specs: list[Self]) -> Self:
|
|
"""
|
|
Merge a list of FullAttentionSpec objects into a single
|
|
FullAttentionSpec object.
|
|
"""
|
|
assert all(isinstance(spec, FullAttentionSpec) for spec in specs), (
|
|
"All attention layers in the same KV cache group must be "
|
|
"FullAttentionSpec.")
|
|
|
|
sliding_window = set(spec.sliding_window for spec in specs
|
|
if spec.sliding_window is not None)
|
|
attention_chunk_size = set(spec.attention_chunk_size for spec in specs
|
|
if spec.attention_chunk_size is not None)
|
|
merged_spec = cls(
|
|
block_size=specs[0].block_size,
|
|
num_kv_heads=specs[0].num_kv_heads,
|
|
head_size=specs[0].head_size,
|
|
dtype=specs[0].dtype,
|
|
use_mla=specs[0].use_mla,
|
|
sliding_window=cls.merge_window_sizes(sliding_window),
|
|
attention_chunk_size=cls.merge_window_sizes(attention_chunk_size),
|
|
)
|
|
for spec in specs:
|
|
for f in fields(AttentionSpec):
|
|
assert getattr(spec, f.name) == getattr(merged_spec, f.name), (
|
|
"All attention layers in the same KV cache group must have "
|
|
"the same attention spec.")
|
|
assert (
|
|
(merged_spec.sliding_window is not None) +
|
|
(merged_spec.attention_chunk_size is not None) <= 1
|
|
), ("Model with both sliding window layers and chunked local attention "
|
|
"layers is not supported.")
|
|
return merged_spec
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class ChunkedLocalAttentionSpec(AttentionSpec):
|
|
attention_chunk_size: int
|
|
|
|
def max_memory_usage_bytes(self, vllm_config: VllmConfig) -> int:
|
|
max_model_len = vllm_config.model_config.max_model_len
|
|
max_num_batched_tokens = (
|
|
vllm_config.scheduler_config.max_num_batched_tokens)
|
|
|
|
# During chunked prefill, we allocate KV cache for at most
|
|
# `self.attention_chunk_size` computed tokens plus the newly scheduled
|
|
# tokens. And we won't allocate KV cache for more than `max_model_len`
|
|
# tokens.
|
|
num_tokens = min(self.attention_chunk_size + max_num_batched_tokens,
|
|
max_model_len)
|
|
|
|
return cdiv(num_tokens, self.block_size) * self.page_size_bytes
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class SlidingWindowSpec(AttentionSpec):
|
|
sliding_window: int
|
|
|
|
def __post_init__(self):
|
|
assert not self.use_mla, "MLA is not supported for sliding window"
|
|
|
|
def max_memory_usage_bytes(self, vllm_config: VllmConfig) -> int:
|
|
assert vllm_config.parallel_config.decode_context_parallel_size == 1, \
|
|
"DCP not support sliding window."
|
|
max_model_len = vllm_config.model_config.max_model_len
|
|
max_num_batched_tokens = (
|
|
vllm_config.scheduler_config.max_num_batched_tokens)
|
|
|
|
# During chunked prefill, we allocate KV cache for the last
|
|
# `self.sliding_window-1` computed tokens plus the newly scheduled
|
|
# tokens. And we won't allocate KV cache for more than `max_model_len`
|
|
# tokens.
|
|
num_tokens = min(self.sliding_window - 1 + max_num_batched_tokens,
|
|
max_model_len)
|
|
|
|
# +1 here because the sliding window may not start from the beginning
|
|
# of the block. For example, if the block size is 4 and num_token
|
|
# is 4, we need two blocks [XXCD] [EF] to store the sliding
|
|
# window [CDEF] of 6 tokens.
|
|
return (cdiv(num_tokens, self.block_size) + 1) * self.page_size_bytes
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class MambaSpec(KVCacheSpec):
|
|
shapes: tuple[tuple[int, ...], ...]
|
|
dtypes: tuple[torch.dtype]
|
|
page_size_padded: Optional[int] = None
|
|
mamba_type: str = "mamba2"
|
|
num_speculative_blocks: int = 0
|
|
|
|
@property
|
|
def page_size_bytes(self) -> int:
|
|
page_size = sum(
|
|
prod(shape) * get_dtype_size(dtype)
|
|
for (shape, dtype) in zip(self.shapes, self.dtypes))
|
|
if self.page_size_padded is not None:
|
|
assert self.page_size_padded >= page_size
|
|
return self.page_size_padded
|
|
return page_size
|
|
|
|
def max_memory_usage_bytes(self, vllm_config: VllmConfig) -> int:
|
|
# We allocate 1 block for each request now, so max_memory_usage_bytes is
|
|
# the same as page_size_bytes.
|
|
# Need to update this when supporting prefix caching.
|
|
return self.page_size_bytes
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class EncoderOnlyAttentionSpec(AttentionSpec):
|
|
|
|
def max_memory_usage_bytes(self, vllm_config: VllmConfig) -> int:
|
|
# Encoder-only layers do not need KV cache
|
|
return 0
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class CrossAttentionSpec(AttentionSpec):
|
|
"""
|
|
KV cache spec for cross-attention layers in encoder-decoder models.
|
|
"""
|
|
|
|
def max_memory_usage_bytes(self, vllm_config: VllmConfig) -> int:
|
|
# For cross-attention, we need to cache encoder states
|
|
# Get encoder length (e.g., 1500 for Whisper).
|
|
max_encoder_len = vllm_config.scheduler_config.\
|
|
max_num_encoder_input_tokens
|
|
return cdiv(max_encoder_len, self.block_size) * self.page_size_bytes
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class UniformTypeKVCacheSpecs(KVCacheSpec):
|
|
"""
|
|
A KV cache spec for multiple layers with the same type of attention. Here,
|
|
same types means always need the same number of token slots. For example,
|
|
sliding window attentions with different window sizes are not the same type
|
|
and should not be merged into one UniformTypeKVCacheSpecs.
|
|
"""
|
|
kv_cache_specs: dict[str, KVCacheSpec]
|
|
|
|
@property
|
|
def page_size_bytes(self) -> int:
|
|
return sum(spec.page_size_bytes
|
|
for spec in self.kv_cache_specs.values())
|
|
|
|
def max_memory_usage_bytes(self, vllm_config: VllmConfig) -> int:
|
|
max_num_pages = max(
|
|
cdiv(spec.max_memory_usage_bytes(vllm_config),
|
|
spec.page_size_bytes)
|
|
for spec in self.kv_cache_specs.values())
|
|
return max_num_pages * self.page_size_bytes
|
|
|
|
@classmethod
|
|
def is_uniform_type(cls, kv_cache_specs: dict[str, KVCacheSpec]) -> bool:
|
|
"""
|
|
Whether all layers have the same type of KV cache spec.
|
|
"""
|
|
block_sizes = set(spec.block_size for spec in kv_cache_specs.values())
|
|
if len(block_sizes) > 1:
|
|
# Different block sizes, not uniform.
|
|
return False
|
|
one_spec = next(iter(kv_cache_specs.values()))
|
|
if isinstance(one_spec, (FullAttentionSpec, CrossAttentionSpec)):
|
|
return all(
|
|
isinstance(spec, type(one_spec))
|
|
for spec in kv_cache_specs.values())
|
|
elif isinstance(one_spec, SlidingWindowSpec):
|
|
return all(
|
|
isinstance(spec, SlidingWindowSpec)
|
|
and spec.sliding_window == one_spec.sliding_window
|
|
for spec in kv_cache_specs.values())
|
|
elif isinstance(one_spec, ChunkedLocalAttentionSpec):
|
|
return all(
|
|
isinstance(spec, ChunkedLocalAttentionSpec)
|
|
and spec.attention_chunk_size == one_spec.attention_chunk_size
|
|
for spec in kv_cache_specs.values())
|
|
elif isinstance(one_spec, MambaSpec):
|
|
return all(
|
|
isinstance(spec, MambaSpec) and spec.num_speculative_blocks ==
|
|
one_spec.num_speculative_blocks
|
|
for spec in kv_cache_specs.values())
|
|
else:
|
|
# NOTE(Chen): Please add new branches for new KV cache spec types.
|
|
raise NotImplementedError(
|
|
f"Unsupported KV cache spec type: {type(one_spec)}")
|
|
|
|
@classmethod
|
|
def from_specs(cls, kv_cache_specs: dict[str,
|
|
KVCacheSpec]) -> Optional[Self]:
|
|
"""
|
|
Return a SameTypeKVCacheSpecs object if all layers have the same type
|
|
of KV cache spec. Return None if not.
|
|
"""
|
|
if cls.is_uniform_type(kv_cache_specs):
|
|
block_size = next(iter(kv_cache_specs.values())).block_size
|
|
return cls(block_size=block_size, kv_cache_specs=kv_cache_specs)
|
|
else:
|
|
return None
|
|
|
|
|
|
@dataclass
|
|
class KVCacheTensor:
|
|
"""
|
|
A class for specifying how the workers should initialize the KV cache.
|
|
"""
|
|
size: int # size of the KV cache tensor in bytes
|
|
shared_by: list[str] # layer names that share the same KV cache tensor
|
|
|
|
|
|
@dataclass
|
|
class KVCacheGroupSpec:
|
|
"""
|
|
Represents a group of model layers that share the same KV cache block table.
|
|
These layers are regarded as one layer in the KV cache manager.
|
|
"""
|
|
# The names of model layers in this group
|
|
layer_names: list[str]
|
|
# The KV cache spec of this manager layer
|
|
kv_cache_spec: KVCacheSpec
|
|
|
|
|
|
@dataclass
|
|
class KVCacheConfig:
|
|
"""
|
|
The KV cache configuration of a model.
|
|
"""
|
|
"""The number of KV cache blocks"""
|
|
num_blocks: int
|
|
"""How should model runner initialize the KV cache tensors for each layer"""
|
|
kv_cache_tensors: list[KVCacheTensor]
|
|
"""
|
|
The kv cache groups of the model.
|
|
For models with only one type of attention, there is only one group that
|
|
contains all layers.
|
|
For models with multiple types of attention, there will be multiple groups,
|
|
see `_get_kv_cache_config_uniform_page_size` for more details.
|
|
"""
|
|
kv_cache_groups: list[KVCacheGroupSpec]
|