vllm/vllm/model_executor/models/interns1_vit.py
baonudesifeizhai 6cbd41909e
Feature/vit attention unification# 23880 (#23978)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-09-10 06:10:14 -07:00

419 lines
15 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# adapted from https://huggingface.co/OpenGVLab/InternVL2-4B/blob/main/modeling_intern_vit.py
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
from collections.abc import Iterable
from typing import Optional
import torch
import torch.nn as nn
from transformers import PretrainedConfig
from transformers.utils import torch_int
from vllm.attention.layer import MultiHeadAttention
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
NORM2FN = {
'rms_norm': RMSNorm,
'layer_norm': nn.LayerNorm,
}
class InternS1VisionPatchEmbeddings(nn.Module):
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] //
patch_size[0])
patch_shape = (image_size[0] // patch_size[0],
image_size[1] // patch_size[1])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.patch_shape = patch_shape
self.projection = nn.Conv2d(num_channels,
hidden_size,
kernel_size=patch_size,
stride=patch_size)
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values "
"match with the one set in the configuration.")
embeddings = self.projection(
pixel_values.to(self.projection.weight.dtype))
patch_height, patch_width = embeddings.shape[2], embeddings.shape[3]
embeddings = embeddings.flatten(2).transpose(1, 2)
return embeddings, (patch_height, patch_width)
class InternS1VisionEmbeddings(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.config = config
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
if config.use_mask_token:
self.mask_token = nn.Parameter(
torch.zeros(1, 1, config.hidden_size))
else:
self.mask_token = None
self.patch_embeddings = InternS1VisionPatchEmbeddings(config)
self.patch_size = config.patch_size
self.image_size = (config.image_size if isinstance(
config.image_size, Iterable) else
(config.image_size, config.image_size))
num_patches = self.patch_embeddings.num_patches
if config.use_absolute_position_embeddings:
self.position_embeddings = nn.Parameter(
torch.zeros(1, num_patches + 1, config.hidden_size))
else:
self.position_embeddings = None
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int,
width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
""" # noqa: E501
num_patches = embeddings.shape[1] - 1
num_positions = self.position_embeddings.shape[1] - 1
# always interpolate when tracing to ensure the exported model
# works for dynamic input shapes
if not torch.jit.is_tracing(
) and num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, :1]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
new_height = height // self.patch_size[0]
new_width = width // self.patch_size[1]
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions,
sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
def forward(
self,
pixel_values: torch.Tensor,
bool_masked_pos: Optional[torch.BoolTensor] = None,
) -> torch.Tensor:
_, _, height, width = pixel_values.shape
embeddings, (patch_height,
patch_width) = self.patch_embeddings(pixel_values)
batch_size, seq_len, _ = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1 - w) + mask_tokens * w
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
if self.position_embeddings is not None:
embeddings = embeddings + self.interpolate_pos_encoding(
embeddings, height, width)
return embeddings, (patch_height, patch_width)
class InternSdpaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
config: PretrainedConfig,
*,
num_dummy_heads: int = 0,
) -> None:
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f'embed_dim must be divisible by num_heads '
f'(got `embed_dim`: {self.embed_dim} and `num_heads`:'
f' {self.num_heads}).')
# Additional dummy heads are used to enable TP for common GPU counts.
self.dummy_dim = (num_dummy_heads + self.num_heads) * self.head_dim
self.scale = self.head_dim**-0.5
self.q_proj = nn.Linear(self.embed_dim,
self.num_heads * self.head_dim,
bias=config.attention_bias)
self.k_proj = nn.Linear(self.embed_dim,
self.num_heads * self.head_dim,
bias=config.attention_bias)
self.v_proj = nn.Linear(self.embed_dim,
self.num_heads * self.head_dim,
bias=config.attention_bias)
self.qk_normalization = config.use_qk_norm
if self.qk_normalization:
self.q_norm = RMSNorm(self.dummy_dim,
eps=config.layer_norm_eps,
var_hidden_size=self.embed_dim)
self.k_norm = RMSNorm(self.dummy_dim,
eps=config.layer_norm_eps,
var_hidden_size=self.embed_dim)
self.projection_layer = nn.Linear(self.dummy_dim, self.embed_dim)
# Use unified MultiHeadAttention with automatic backend selection
self.attn = MultiHeadAttention(self.num_heads, self.head_dim,
self.scale)
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, N, C = x.shape
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
if self.qk_normalization:
B_, N_, H_, D_ = q.shape
q = self.q_norm(q.flatten(-2, -1)).view(B_, N_, H_, D_)
k = self.k_norm(k.flatten(-2, -1)).view(B_, N_, H_, D_)
# Use unified MultiHeadAttention with automatic backend selection
x = self.attn(q, k, v)
x = self.projection_layer(x)
return x
class InternS1VisionMLP(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.activation_fn = get_act_fn(config.hidden_act)
self.fc1 = ColumnParallelLinear(config.hidden_size,
config.intermediate_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.fc1")
self.fc2 = RowParallelLinear(config.intermediate_size,
config.hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.fc2")
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states, _ = self.fc2(hidden_states)
return hidden_states
class InternS1VisionLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_dummy_heads: int = 0,
prefix: str = "",
) -> None:
super().__init__()
self.attention = self._init_attn(config,
quant_config,
num_dummy_heads=num_dummy_heads,
prefix=f"{prefix}.attention")
self.mlp = InternS1VisionMLP(config,
quant_config=quant_config,
prefix=f"{prefix}.mlp")
self.layernorm_before = NORM2FN[config.norm_type](
config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = NORM2FN[config.norm_type](
config.hidden_size, eps=config.layer_norm_eps)
init_values = config.layer_scale_init_value
self.lambda_1 = nn.Parameter(init_values *
torch.ones(config.hidden_size),
requires_grad=True)
self.lambda_2 = nn.Parameter(init_values *
torch.ones(config.hidden_size),
requires_grad=True)
def _init_attn(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig],
*,
num_dummy_heads: int,
prefix: str = "",
):
return InternSdpaAttention(config, num_dummy_heads=num_dummy_heads)
def forward(
self,
hidden_states: torch.Tensor,
):
hidden_states = hidden_states + self.attention(
self.layernorm_before(hidden_states)) * self.lambda_1
hidden_states = hidden_states + self.mlp(
self.layernorm_after(hidden_states)) * self.lambda_2
return hidden_states
class InternS1VisionEncoder(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
num_dummy_heads: int = 0,
prefix: str = "",
):
super().__init__()
self.config = config
if num_hidden_layers_override is None:
num_hidden_layers = config.num_hidden_layers
else:
num_hidden_layers = num_hidden_layers_override
self.layer = nn.ModuleList([
InternS1VisionLayer(config,
quant_config,
num_dummy_heads=num_dummy_heads,
prefix=f"{prefix}.layer.{layer_idx}")
for layer_idx in range(num_hidden_layers)
])
def forward(self, inputs_embeds: torch.Tensor):
hidden_states = inputs_embeds
for encoder_layer in self.layer:
hidden_states = encoder_layer(hidden_states)
return hidden_states
class InternS1VisionModel(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
num_dummy_heads: int = 0,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.embeddings = InternS1VisionEmbeddings(config)
self.encoder = InternS1VisionEncoder(
config=config,
num_hidden_layers_override=num_hidden_layers_override,
num_dummy_heads=num_dummy_heads,
prefix=f"{prefix}.encoder",
)
self.layernorm = (nn.Identity() if config.use_mean_pooling else
nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps))
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
pixel_embeds: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
if pixel_values is None and pixel_embeds is None:
raise ValueError(
'You have to specify pixel_values or pixel_embeds')
if pixel_embeds is not None:
hidden_states = pixel_embeds
elif pixel_values is not None:
if pixel_values.ndim == 4:
hidden_states, _ = self.embeddings(pixel_values)
else:
raise ValueError(
f'wrong pixel_values size: {pixel_values.shape}')
encoder_outputs = self.encoder(inputs_embeds=hidden_states)
encoder_outputs = self.layernorm(encoder_outputs)
return encoder_outputs
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params