vllm/vllm/model_executor/input_metadata.py
2023-11-29 22:16:37 -08:00

43 lines
1.4 KiB
Python

from typing import List, Optional
import torch
class InputMetadata:
"""Metadata for input sequences. Used in PagedAttention.
Args:
prompt_lens: Lengths of prompts.
slot_mapping: The address to write the new KV to of each token.
max_context_len: The maximum context length.
context_lens: the length of attention context for each sequence.
block_tables: The block tables. (Seq id -> list of physical block)
"""
def __init__(
self,
prompt_lens: List[int],
slot_mapping: torch.Tensor,
max_context_len: Optional[int],
context_lens: Optional[torch.Tensor],
block_tables: Optional[torch.Tensor],
) -> None:
self.prompt_lens = prompt_lens
self.max_context_len = max_context_len
self.slot_mapping = slot_mapping
self.context_lens = context_lens
self.block_tables = block_tables
self.is_prompt = len(prompt_lens) > 0
# Set during the execution of the first attention op.
# FIXME(woosuk): This is a hack.
self.attn_bias = None
def __repr__(self) -> str:
return ("InputMetadata("
f"prompt_lens={self.prompt_lens}, "
f"max_context_len={self.max_context_len}, "
f"slot_mapping={self.slot_mapping}, "
f"context_lens={self.context_lens}, "
f"block_tables={self.block_tables})")