mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 11:25:02 +08:00
43 lines
1.4 KiB
Python
43 lines
1.4 KiB
Python
from typing import List, Optional
|
|
|
|
import torch
|
|
|
|
|
|
class InputMetadata:
|
|
"""Metadata for input sequences. Used in PagedAttention.
|
|
|
|
Args:
|
|
prompt_lens: Lengths of prompts.
|
|
slot_mapping: The address to write the new KV to of each token.
|
|
max_context_len: The maximum context length.
|
|
context_lens: the length of attention context for each sequence.
|
|
block_tables: The block tables. (Seq id -> list of physical block)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
prompt_lens: List[int],
|
|
slot_mapping: torch.Tensor,
|
|
max_context_len: Optional[int],
|
|
context_lens: Optional[torch.Tensor],
|
|
block_tables: Optional[torch.Tensor],
|
|
) -> None:
|
|
self.prompt_lens = prompt_lens
|
|
self.max_context_len = max_context_len
|
|
self.slot_mapping = slot_mapping
|
|
self.context_lens = context_lens
|
|
self.block_tables = block_tables
|
|
|
|
self.is_prompt = len(prompt_lens) > 0
|
|
# Set during the execution of the first attention op.
|
|
# FIXME(woosuk): This is a hack.
|
|
self.attn_bias = None
|
|
|
|
def __repr__(self) -> str:
|
|
return ("InputMetadata("
|
|
f"prompt_lens={self.prompt_lens}, "
|
|
f"max_context_len={self.max_context_len}, "
|
|
f"slot_mapping={self.slot_mapping}, "
|
|
f"context_lens={self.context_lens}, "
|
|
f"block_tables={self.block_tables})")
|