vllm/vllm/model_executor/models/granitemoehybrid.py
Asaf Joseph Gardin 9273754222
[Hybrid] Added supports_mamba_prefix_caching Protocol (#27339)
Signed-off-by: asafg <39553475+Josephasafg@users.noreply.github.com>
2025-10-27 13:05:20 +00:00

724 lines
26 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Inference-only GraniteMoeHybrid model."""
# Added by the IBM Team, 2025
from collections.abc import Iterable
import torch
from torch import nn
from transformers import GraniteMoeHybridConfig
from vllm.attention.layer import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, ModelConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import get_pp_group
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import QKVParallelLinear, RowParallelLinear
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.mamba_mixer2 import MambaMixer2
from vllm.model_executor.layers.mamba.mamba_utils import (
MambaStateDtypeCalculator,
MambaStateShapeCalculator,
)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE,
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.sequence import IntermediateTensors
from .granitemoe import GraniteMoeMoE
from .granitemoeshared import GraniteMoeSharedMLP
from .interfaces import (
HasInnerState,
IsHybrid,
SupportsLoRA,
SupportsMambaPrefixCaching,
SupportsPP,
SupportsQuant,
)
from .utils import (
AutoWeightsLoader,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory,
make_layers,
maybe_prefix,
)
class GraniteMoeHybridMambaDecoderLayer(nn.Module):
def __init__(
self,
config: GraniteMoeHybridConfig,
layer_idx: int,
model_config: ModelConfig | None = None,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.residual_multiplier = config.residual_multiplier
self.mamba = MambaMixer2(
hidden_size=config.hidden_size,
ssm_state_size=config.mamba_d_state,
conv_kernel_size=config.mamba_d_conv,
intermediate_size=config.mamba_expand * config.hidden_size,
use_conv_bias=config.mamba_conv_bias,
use_bias=config.mamba_proj_bias,
n_groups=config.mamba_n_groups,
num_heads=config.mamba_n_heads,
head_dim=config.mamba_d_head,
rms_norm_eps=config.rms_norm_eps,
activation=config.hidden_act,
model_config=model_config,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.mixer",
)
self.block_sparse_moe = None
if getattr(config, "num_local_experts", 0) > 0:
self.block_sparse_moe = GraniteMoeMoE(
num_experts=config.num_local_experts,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
quant_config=quant_config,
prefix=f"{prefix}.block_sparse_moe",
)
self.shared_mlp = (
None
if getattr(config, "shared_intermediate_size", 0) == 0
else GraniteMoeSharedMLP(
config, quant_config=quant_config, prefix=f"{prefix}.shared_mlp"
)
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
**kwargs,
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
output = torch.empty_like(hidden_states)
self.mamba(hidden_states, output)
hidden_states = residual + output * self.residual_multiplier
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
if self.shared_mlp is None:
if self.block_sparse_moe is not None:
hidden_states = self.block_sparse_moe(hidden_states)
# else: skip
else:
# create a copy since block_sparse_moe modifies in-place
if self.block_sparse_moe is not None:
moe_hidden_states = hidden_states.clone()
moe_hidden_states = self.block_sparse_moe(moe_hidden_states)
hidden_states = moe_hidden_states + self.shared_mlp(hidden_states)
del moe_hidden_states
else:
hidden_states = self.shared_mlp(hidden_states)
hidden_states = residual + hidden_states * self.residual_multiplier
return hidden_states, residual
class GraniteMoeHybridAttentionDecoderLayer(nn.Module):
def __init__(
self,
config: GraniteMoeHybridConfig,
layer_idx: int,
model_config: ModelConfig | None = None,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.residual_multiplier = config.residual_multiplier
self.self_attn = GraniteMoeHybridAttention(
config,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
self.block_sparse_moe = None
if getattr(config, "num_local_experts", 0) > 0:
self.block_sparse_moe = GraniteMoeMoE(
num_experts=config.num_local_experts,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
quant_config=quant_config,
prefix=f"{prefix}.block_sparse_moe",
)
self.shared_mlp = (
None
if getattr(config, "shared_intermediate_size", 0) == 0
else GraniteMoeSharedMLP(
config, quant_config=quant_config, prefix=f"{prefix}.shared_mlp"
)
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
)
hidden_states = residual + hidden_states * self.residual_multiplier
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
if self.shared_mlp is None:
if self.block_sparse_moe is not None:
hidden_states = self.block_sparse_moe(hidden_states)
# else: skip
else:
# create a copy since block_sparse_moe modifies in-place
if self.block_sparse_moe is not None:
moe_hidden_states = hidden_states.clone()
moe_hidden_states = self.block_sparse_moe(moe_hidden_states)
hidden_states = moe_hidden_states + self.shared_mlp(hidden_states)
del moe_hidden_states
else:
hidden_states = self.shared_mlp(hidden_states)
hidden_states = residual + hidden_states * self.residual_multiplier
return hidden_states, residual
class GraniteMoeHybridAttention(nn.Module):
def __init__(
self,
config: GraniteMoeHybridConfig,
model_config: ModelConfig | None = None,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.causal = True
self.hidden_size = config.hidden_size
self.attention_bias = config.attention_bias
self.attention_multiplier = config.attention_multiplier
self.total_num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.total_num_heads
self.total_num_kv_heads = config.num_key_value_heads
# TensorParallel logic
tp_size = get_tensor_model_parallel_world_size()
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_key_value_heads = max(1, self.total_num_kv_heads // tp_size)
self.qkv_proj = QKVParallelLinear(
self.hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=self.attention_bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
self.hidden_size,
self.hidden_size,
bias=self.attention_bias,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
if config.position_embedding_type == "rope":
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=config.max_position_embeddings,
base=int(config.rope_theta),
rope_scaling=config.rope_scaling
if hasattr(config, "rope_scaling") and config.rope_scaling is not None
else None,
is_neox_style=True,
)
else:
self.rotary_emb = None
self.attn = Attention(
self.num_heads,
self.head_dim,
self.attention_multiplier,
num_kv_heads=self.num_key_value_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
query, key, value = qkv.split(
[
self.num_heads * self.head_dim,
self.num_key_value_heads * self.head_dim,
self.num_key_value_heads * self.head_dim,
],
dim=-1,
)
if self.rotary_emb is not None:
query, key = self.rotary_emb(positions, query, key)
hidden_states = self.attn(query, key, value)
del query, key, value
hidden_states = self.o_proj(hidden_states)[0]
return hidden_states
ALL_DECODER_LAYER_TYPES = {
"attention": GraniteMoeHybridAttentionDecoderLayer,
"mamba": GraniteMoeHybridMambaDecoderLayer,
}
@support_torch_compile
class GraniteMoeHybridModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
model_config = vllm_config.model_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
self.quant_config = quant_config
lora_vocab = (
(lora_config.lora_extra_vocab_size * (lora_config.max_loras or 1))
if lora_config
else 0
)
self.vocab_size = config.vocab_size + lora_vocab
self.org_vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
)
self.embedding_multiplier = config.embedding_multiplier
def get_layer(prefix: str):
layer_idx = int(prefix.rsplit(".", 1)[1])
layer_class = ALL_DECODER_LAYER_TYPES[config.layer_types[layer_idx]]
return layer_class(
config,
layer_idx,
model_config,
cache_config,
quant_config=quant_config,
prefix=prefix,
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers"
)
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
hidden_states = hidden_states * self.embedding_multiplier
residual = None
else:
if intermediate_tensors is None:
raise RuntimeError("Intermediate tensors may not be None!")
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
num_attn = 0
for i, layer in enumerate(self.layers):
if isinstance(layer, GraniteMoeHybridAttentionDecoderLayer):
num_attn += 1
hidden_states, residual = layer(
positions=positions, hidden_states=hidden_states, residual=residual
)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{"hidden_states": hidden_states, "residual": residual}
)
hidden_states = self.norm(hidden_states)
return hidden_states
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
# layers.0.block_sparse_moe.expert_0.input_linear.input_scale
ckpt_gate_proj_name = "gate_proj"
ckpt_down_proj_name = "down_proj"
ckpt_up_proj_name = "up_proj"
num_experts = self.config.num_local_experts
return [
# (param_name, weight_name, expert_id, shard_id)
(
"block_sparse_moe.experts.w13_"
if weight_name in [ckpt_gate_proj_name, ckpt_up_proj_name]
else "block_sparse_moe.experts.w2_",
f"block_sparse_moe.experts.{expert_id}.{weight_name}.",
expert_id,
shard_id,
)
for expert_id in range(num_experts)
for shard_id, weight_name in [
("w1", ckpt_gate_proj_name),
("w2", ckpt_down_proj_name),
("w3", ckpt_up_proj_name),
]
]
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
expert_params_mapping = self.get_expert_mapping()
def _load(n, p):
param = params_dict[n]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, p)
loaded_params.add(n)
def _load_shard(n, p, shard_id):
# Skip layers on other devices.
if not is_pp_missing_parameter(n, self):
param = params_dict[n]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, p, shard_id)
loaded_params.add(n)
def _load_expert(n, p, name, shard_id, expert_id):
param = params_dict[n]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, p, name, shard_id=shard_id, expert_id=expert_id)
loaded_params.add(n)
def _load_quant_expert(name, loaded_weight):
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name_mapped = name.replace(weight_name, param_name)
# Skip layers on other devices.
if is_pp_missing_parameter(name_mapped, self):
continue
param = params_dict[name_mapped]
weight_loader = param.weight_loader
success = False
if weight_loader is not None:
success = weight_loader(
param,
loaded_weight,
name_mapped,
shard_id=shard_id,
expert_id=expert_id,
return_success=True,
)
if success:
return name_mapped
return None
for n, p in weights:
if "A_log" in n:
n = n.replace("A_log", "A")
if self.quant_config is not None and (
scale_name := self.quant_config.get_cache_scale(n)
):
# Loading kv cache quantization scales
loaded_weight = p
loaded_weight = (
loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0]
)
_load(scale_name, loaded_weight)
loaded_params.add(scale_name)
continue
if _load_quant_expert(n, p):
continue
# Logic analogous to: https://github.com/vllm-project/vllm/blob/f49e5aff11c986ed4d45202b1716c5d74786efa9/vllm/model_executor/models/granitemoeshared.py#L215
# Mapping different experts' layout:
# from HF (input_linear, output_linear, router)
# to vLLM (experts_w13({e}.w1, {e}.w2), experts_w3({e}.w3), gate)
# The renaming and parameter loading logic is the same for weight
# and weight_scale tensors so we can reuse them without issues.
if n.endswith(".block_sparse_moe.input_linear.weight") or n.endswith(
".block_sparse_moe.input_linear.weight_scale"
):
for e in range(p.size(0)):
w1_name = n.replace(
".block_sparse_moe.input_linear.weight",
f".block_sparse_moe.experts.{e}.w1.weight",
)
w3_name = n.replace(
".block_sparse_moe.input_linear.weight",
f".block_sparse_moe.experts.{e}.w3.weight",
)
w1_param, w3_param = p[e].chunk(2, dim=0)
_load_expert(
n.replace(".input_linear.", ".experts.w13_"),
w1_param,
w1_name,
shard_id="w1",
expert_id=e,
)
_load_expert(
n.replace(".input_linear.", ".experts.w13_"),
w3_param,
w3_name,
shard_id="w3",
expert_id=e,
)
elif n.endswith(".block_sparse_moe.output_linear.weight") or n.endswith(
".block_sparse_moe.output_linear.weight_scale"
):
for e in range(p.size(0)):
w2_name = n.replace(
".block_sparse_moe.output_linear.weight",
f".block_sparse_moe.experts.{e}.w2.weight",
)
w2_param = p[e]
_load_expert(
n.replace(".output_linear.", ".experts.w2_"),
w2_param,
w2_name,
shard_id="w2",
expert_id=e,
)
elif n.endswith(".block_sparse_moe.router.layer.weight"):
gate_name = n.replace(
".block_sparse_moe.router.layer.weight",
".block_sparse_moe.gate.weight",
)
_load(gate_name, p)
else:
loaded = False
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name in n:
_load_shard(
n.replace(weight_name, param_name), p, shard_id=shard_id
)
loaded = True
if not loaded:
_load(n, p)
return loaded_params
class GraniteMoeHybridForCausalLM(
nn.Module,
HasInnerState,
SupportsLoRA,
SupportsPP,
IsHybrid,
SupportsQuant,
SupportsMambaPrefixCaching,
):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
}
embedding_modules = {
"embed_tokens": "input_embeddings",
"lm_head": "output_embeddings",
}
embedding_padding_modules = ["lm_head"]
@classmethod
def get_mamba_state_dtype_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[torch.dtype, torch.dtype]:
return MambaStateDtypeCalculator.mamba2_state_dtype(
vllm_config.model_config.dtype,
vllm_config.cache_config.mamba_cache_dtype,
vllm_config.cache_config.mamba_ssm_cache_dtype,
)
@classmethod
def get_mamba_state_shape_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[tuple[int, int], tuple[int, int, int]]:
"""Calculate shapes for Mamba's convolutional and state caches.
Args:
vllm_config: vLLM config
Returns:
Tuple containing:
- conv_state_shape: Shape for convolutional state cache
- temporal_state_shape: Shape for state space model cache
"""
parallel_config = vllm_config.parallel_config
hf_config = vllm_config.model_config.hf_config
intermediate_size = hf_config.mamba_expand * hf_config.hidden_size
return MambaStateShapeCalculator.mamba2_state_shape(
intermediate_size=intermediate_size,
tp_world_size=parallel_config.tensor_parallel_size,
n_groups=hf_config.mamba_n_groups,
num_heads=hf_config.mamba_n_heads,
head_dim=hf_config.mamba_d_head,
state_size=hf_config.mamba_d_state,
conv_kernel=hf_config.mamba_d_conv,
)
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
lora_config = vllm_config.lora_config
scheduler_config = vllm_config.scheduler_config
self.quant_config = vllm_config.quant_config
self.config = config
self.scheduler_config = scheduler_config
self.model = GraniteMoeHybridModel(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
)
self.unpadded_vocab_size = config.vocab_size
if lora_config:
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE
# We need bigger padding if using lora for kernel
# compatibility
if not lora_config
else lora_config.lora_vocab_padding_size,
quant_config=self.quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
if config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
self.logits_processor = LogitsProcessor(
self.unpadded_vocab_size,
config.vocab_size,
scale=1 / self.config.logits_scaling,
)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs,
):
hidden_states = self.model(
input_ids, positions, intermediate_tensors, inputs_embeds
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights)