mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 19:35:38 +08:00
Signed-off-by: ilmarkov <markovilya197@gmail.com> Signed-off-by: Sage Moore <sage@neuralmagic.com> Co-authored-by: Sage Moore <sage@neuralmagic.com> Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com> Co-authored-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
860 lines
34 KiB
Python
860 lines
34 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
#
|
|
# Copyright 2025 the LLAMA4, Meta Inc., vLLM, and HuggingFace Inc. team.
|
|
# All rights reserved.
|
|
#
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only LLaMA model compatible with HuggingFace weights."""
|
|
|
|
from collections.abc import Iterable
|
|
from typing import Any
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import Llama4TextConfig
|
|
|
|
from vllm.attention import Attention
|
|
from vllm.attention.layers.chunked_local_attention import ChunkedLocalAttention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, VllmConfig
|
|
from vllm.distributed import (
|
|
get_ep_group,
|
|
get_tensor_model_parallel_world_size,
|
|
tensor_model_parallel_all_gather,
|
|
)
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.fused_moe import SharedFusedMoE
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (
|
|
QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.model_loader.weight_utils import (
|
|
default_weight_loader,
|
|
maybe_remap_kv_scale_name,
|
|
)
|
|
from vllm.model_executor.models.interfaces import MixtureOfExperts
|
|
from vllm.model_executor.models.utils import sequence_parallel_chunk
|
|
|
|
from .llama import LlamaForCausalLM, LlamaMLP, LlamaModel
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
extract_layer_index,
|
|
fast_topk,
|
|
is_pp_missing_parameter,
|
|
)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class Llama4MoE(nn.Module):
|
|
@staticmethod
|
|
def custom_routing_function(
|
|
hidden_states: torch.Tensor,
|
|
gating_output: torch.Tensor,
|
|
topk: int,
|
|
renormalize: bool,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
router_scores, router_indices = fast_topk(gating_output, topk, dim=-1)
|
|
# pseudo-standard is that the router scores are floats
|
|
router_scores = torch.sigmoid(router_scores.float())
|
|
return (router_scores, router_indices.to(torch.int32))
|
|
|
|
def __init__(self, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
parallel_config = vllm_config.parallel_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.top_k = config.num_experts_per_tok
|
|
self.is_sequence_parallel = parallel_config.use_sequence_parallel_moe
|
|
self.ep_group = get_ep_group().device_group
|
|
self.ep_rank = get_ep_group().rank_in_group
|
|
self.ep_size = self.ep_group.size()
|
|
|
|
intermediate_size_moe = config.intermediate_size
|
|
self.router = ReplicatedLinear(
|
|
config.hidden_size,
|
|
config.num_local_experts,
|
|
bias=False,
|
|
quant_config=None,
|
|
prefix=f"{prefix}.router",
|
|
)
|
|
|
|
self.shared_expert = LlamaMLP(
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=intermediate_size_moe,
|
|
hidden_act="silu",
|
|
quant_config=quant_config,
|
|
bias=False,
|
|
prefix=f"{prefix}.shared_expert",
|
|
reduce_results=False,
|
|
disable_tp=self.is_sequence_parallel,
|
|
)
|
|
|
|
# Load balancing settings.
|
|
eplb_config = parallel_config.eplb_config if parallel_config else None
|
|
self.enable_eplb = parallel_config.enable_eplb if parallel_config else False
|
|
self.n_redundant_experts = (
|
|
eplb_config.num_redundant_experts if eplb_config else 0
|
|
)
|
|
|
|
self.n_routed_experts: int = config.num_local_experts
|
|
self.n_logical_experts = self.n_routed_experts
|
|
self.n_shared_experts: int = 1
|
|
self.n_local_experts: int = config.num_local_experts
|
|
self.n_physical_experts = self.n_local_experts + self.n_redundant_experts
|
|
self.n_local_physical_experts = self.n_physical_experts // self.ep_size
|
|
|
|
self.experts = SharedFusedMoE(
|
|
shared_experts=self.shared_expert,
|
|
num_experts=config.num_local_experts,
|
|
top_k=config.num_experts_per_tok,
|
|
hidden_size=config.hidden_size,
|
|
custom_routing_function=Llama4MoE.custom_routing_function,
|
|
intermediate_size=intermediate_size_moe,
|
|
apply_router_weight_on_input=True,
|
|
reduce_results=False,
|
|
renormalize=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.experts",
|
|
is_sequence_parallel=self.is_sequence_parallel,
|
|
enable_eplb=self.enable_eplb,
|
|
num_redundant_experts=self.n_redundant_experts,
|
|
)
|
|
|
|
def forward(self, hidden_states):
|
|
num_tokens = hidden_states.shape[0]
|
|
if self.is_sequence_parallel:
|
|
hidden_states = sequence_parallel_chunk(hidden_states)
|
|
|
|
router_logits, _ = self.router(hidden_states)
|
|
|
|
shared_out, routed_out = self.experts(
|
|
hidden_states=hidden_states,
|
|
router_logits=router_logits,
|
|
)
|
|
experts_out = routed_out + shared_out
|
|
|
|
if self.is_sequence_parallel:
|
|
experts_out = tensor_model_parallel_all_gather(experts_out, 0)
|
|
experts_out = experts_out[:num_tokens]
|
|
elif self.tp_size > 1:
|
|
experts_out = self.experts.maybe_all_reduce_tensor_model_parallel(
|
|
experts_out
|
|
)
|
|
|
|
return experts_out
|
|
|
|
|
|
class Llama4Attention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Llama4TextConfig,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
num_kv_heads: int,
|
|
rope_theta: float = 10000,
|
|
rope_scaling: dict[str, Any] | None = None,
|
|
max_position_embeddings: int = 8192,
|
|
quant_config: QuantizationConfig | None = None,
|
|
bias: bool = False,
|
|
bias_o_proj: bool = False,
|
|
cache_config: CacheConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.layer_idx = extract_layer_index(prefix)
|
|
self.hidden_size = hidden_size
|
|
self.no_rope_layers = config.no_rope_layers
|
|
self.nope = self.no_rope_layers[self.layer_idx] == 0
|
|
self.use_qk_norm = config.use_qk_norm and not self.nope
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.total_num_kv_heads = num_kv_heads
|
|
if self.total_num_kv_heads >= tp_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
self.head_dim = config.head_dim
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
self.attn_temperature_tuning = self.nope and config.attn_temperature_tuning
|
|
|
|
self.floor_scale = getattr(config, "floor_scale", 8192.0)
|
|
self.attn_scale = getattr(config, "attn_scale", 0.1)
|
|
self.rope_theta = rope_theta
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.n_rep = self.num_heads // self.num_kv_heads
|
|
self.qk_norm = (
|
|
RMSNorm(
|
|
hidden_size=self.head_dim,
|
|
eps=config.rms_norm_eps,
|
|
has_weight=False,
|
|
dtype=torch.float32,
|
|
)
|
|
if self.use_qk_norm
|
|
else None
|
|
)
|
|
self.qkv_proj = QKVParallelLinear(
|
|
hidden_size=hidden_size,
|
|
head_size=self.head_dim,
|
|
total_num_heads=self.total_num_heads,
|
|
total_num_kv_heads=self.total_num_kv_heads,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
|
|
self.o_proj = RowParallelLinear(
|
|
input_size=self.total_num_heads * self.head_dim,
|
|
output_size=hidden_size,
|
|
bias=bias_o_proj,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.o_proj",
|
|
)
|
|
is_neox_style = True
|
|
is_gguf = quant_config and quant_config.get_name() == "gguf"
|
|
if is_gguf and config.model_type == "llama":
|
|
is_neox_style = False
|
|
|
|
self.rotary_emb = (
|
|
get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=max_position_embeddings,
|
|
base=int(rope_theta),
|
|
rope_scaling=rope_scaling if rope_scaling != "default" else None,
|
|
is_neox_style=is_neox_style,
|
|
)
|
|
if not self.nope
|
|
else None
|
|
)
|
|
|
|
use_chunked_local_attn = not self.nope and config.attention_chunk_size
|
|
attn_cls = ChunkedLocalAttention if use_chunked_local_attn else Attention
|
|
self.attn = attn_cls(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn",
|
|
**(
|
|
{"attention_chunk_size": config.attention_chunk_size}
|
|
if use_chunked_local_attn
|
|
else {}
|
|
),
|
|
)
|
|
|
|
def _get_attn_scale(self, positions: torch.Tensor) -> torch.Tensor:
|
|
floor = torch.floor((positions + 1.0) / self.floor_scale)
|
|
attn_scale = torch.log(floor + 1.0) * self.attn_scale + 1.0
|
|
|
|
return attn_scale.unsqueeze(-1)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
|
|
if self.rotary_emb is not None:
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
|
|
if self.qk_norm is not None:
|
|
# Normalization is applied on the head_dim dimension. The rest of
|
|
# the dimensions are collapsed into a single dimension to support
|
|
# custom rms_norm cuda kernel.
|
|
q = q.reshape(-1, self.head_dim)
|
|
q = self.qk_norm(q.float()).reshape(-1, self.q_size).to(q.dtype)
|
|
k = k.reshape(-1, self.head_dim)
|
|
k = self.qk_norm(k.float()).reshape(-1, self.kv_size).to(k.dtype)
|
|
|
|
# We are applying temperature tuning (https://arxiv.org/abs/2501.19399)
|
|
# to NoPE layers, where the inference-time temperature tuning function
|
|
# is customized to not affect short context
|
|
# while working at very long context
|
|
# https://arxiv.org/abs/2501.19399
|
|
#
|
|
# We should apply temperature tuning between (after) rotary / QK norm
|
|
# and (before) attention.
|
|
if self.attn_temperature_tuning and self.nope:
|
|
attn_scale = self._get_attn_scale(positions)
|
|
q = (q * attn_scale).to(q.dtype)
|
|
attn_output = self.attn(q, k, v)
|
|
output, _ = self.o_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class Llama4DecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
config: Llama4TextConfig | None = None,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
config = config or vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.layer_idx = extract_layer_index(prefix)
|
|
self.global_layer = config.no_rope_layers[self.layer_idx] == 0
|
|
self.hidden_size = config.hidden_size
|
|
rope_theta = config.rope_theta
|
|
rope_scaling = config.rope_scaling
|
|
max_position_embeddings = config.max_position_embeddings
|
|
|
|
self.self_attn = Llama4Attention(
|
|
config=config,
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
rope_theta=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
max_position_embeddings=max_position_embeddings,
|
|
quant_config=quant_config,
|
|
bias=False,
|
|
bias_o_proj=False,
|
|
cache_config=cache_config,
|
|
prefix=f"{prefix}.self_attn",
|
|
)
|
|
is_moe_layer = (
|
|
config.interleave_moe_layer_step > 0
|
|
and (self.layer_idx + 1) % config.interleave_moe_layer_step == 0
|
|
)
|
|
if is_moe_layer:
|
|
self.feed_forward = Llama4MoE(
|
|
vllm_config=vllm_config,
|
|
prefix=f"{prefix}.feed_forward",
|
|
)
|
|
else:
|
|
self.feed_forward = LlamaMLP(
|
|
hidden_size=self.hidden_size,
|
|
intermediate_size=config.intermediate_size_mlp,
|
|
hidden_act="silu",
|
|
quant_config=quant_config,
|
|
bias=False,
|
|
prefix=f"{prefix}.feed_forward",
|
|
)
|
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = RMSNorm(
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
# Self Attention
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
|
hidden_states = self.self_attn(positions=positions, hidden_states=hidden_states)
|
|
|
|
# Fully Connected
|
|
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
|
hidden_states = self.feed_forward(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
@support_torch_compile
|
|
class Llama4Model(LlamaModel):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
layer_type: type[Llama4DecoderLayer] = Llama4DecoderLayer,
|
|
):
|
|
self.num_experts = vllm_config.model_config.hf_config.num_local_experts
|
|
self.n_redundant_experts = (
|
|
vllm_config.parallel_config.eplb_config.num_redundant_experts
|
|
)
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix, layer_type=layer_type)
|
|
|
|
def load_moe_expert_weights(
|
|
self,
|
|
name: str,
|
|
loaded_weight: torch.Tensor,
|
|
params_dict: dict[str, nn.Parameter],
|
|
loaded_params: set[str],
|
|
expert_params_mapping: list[tuple[str, str, int, str]],
|
|
fused: bool = True,
|
|
) -> bool:
|
|
"""
|
|
Load MoE expert weights.
|
|
|
|
Args:
|
|
name: The name of the weight to load.
|
|
loaded_weight: The weight to load.
|
|
params_dict: The dictionary of module parameters.
|
|
loaded_params: The set of already loaded parameters.
|
|
expert_params_mapping: The mapping of expert parameters. Must be
|
|
generated by SharedFusedMoE.make_expert_params_mapping().
|
|
fused: Whether the expert weights are fused into a single weight
|
|
tensor or are separate weight tensors for each expert.
|
|
When fused is True, loaded_weight should have shape of:
|
|
[num_experts, hidden_in, hidden_out] for gate/up/down proj and
|
|
[hidden_out, hidden_in] for the others like router.
|
|
When fused is False, loaded_weight should have shape of:
|
|
[hidden_out, hidden_in].
|
|
|
|
Returns:
|
|
True if loaded_weight is one of MoE weights and the MoE expert
|
|
weights are loaded successfully, False otherwise.
|
|
"""
|
|
|
|
# Whether the MoE expert weights are loaded successfully.
|
|
expert_param_loaded = False
|
|
|
|
# If fused is True, the loaded weight is in the layout of:
|
|
# [num_experts, hidden_in, hidden_out], so we must transpose the last
|
|
# two dimensions to match the expected layout of the parameters.
|
|
if fused and loaded_weight.ndim == 3:
|
|
loaded_weight = loaded_weight.transpose(-1, -2)
|
|
|
|
# If the gate_proj and up_proj weights are fused into a single
|
|
# weight tensor, we need to split the weight tensor into a tuple
|
|
# of two weight tensors along the hidden_out dimension.
|
|
if "experts.gate_up_proj" in name:
|
|
loaded_weight = loaded_weight.chunk(2, dim=-2)
|
|
|
|
# Iterate over all the expert parameters and load the weights if we find
|
|
# a match in weight name.
|
|
for param_name, weight_name, expert_id, shard_id in expert_params_mapping:
|
|
# Get a view of the loaded_weight to avoid modifying the original
|
|
# one across iterations.
|
|
new_loaded_weight = loaded_weight
|
|
|
|
# If expert weights are fused into a single weight tensor, remove
|
|
# the expert index from the expected weight name.
|
|
if fused:
|
|
# The string between e_str and proj_str is the expert index.
|
|
e_str, _, proj_str, _ = weight_name.split(".")
|
|
weight_name = f"{e_str}.{proj_str}"
|
|
param_name = f"{param_name}weight"
|
|
|
|
# Skip if the current weight is not one of the MoE weights.
|
|
if weight_name not in name:
|
|
continue
|
|
|
|
# Replace the weight name with the parameter name.
|
|
full_param_name = name.replace(weight_name, param_name)
|
|
|
|
# Skip if the current weight corresponds to a parameter that
|
|
# does not exist on the current PP (pipeline parallel) rank.
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
# Skip if the current weight is for the bias.
|
|
if (
|
|
name.endswith(".bias") or name.endswith("_bias")
|
|
) and name not in params_dict:
|
|
continue
|
|
|
|
param = params_dict[full_param_name]
|
|
weight_loader = param.weight_loader
|
|
|
|
if fused:
|
|
# If the parameter is for w13 together, the corresponding weight
|
|
# will be a tuple, so we must select the correct weight
|
|
# depending on the shard id, which is either "w1" or "w3".
|
|
if "w13" in full_param_name:
|
|
assert shard_id in ["w1", "w3"]
|
|
shard_idx = 0 if shard_id == "w1" else 1
|
|
new_loaded_weight = new_loaded_weight[shard_idx]
|
|
|
|
# If EP (expert parallel) is enabled, update expert_id to the
|
|
# starting expert index for the current EP rank and extract the
|
|
# corresponding expert weights.
|
|
layer_idx = extract_layer_index(name)
|
|
expert_map = self.layers[layer_idx].feed_forward.experts.expert_map
|
|
if expert_map is not None:
|
|
local_expert_indices = (
|
|
(expert_map != -1)
|
|
.nonzero()
|
|
.flatten()
|
|
.to(new_loaded_weight.device)
|
|
)
|
|
new_loaded_weight = new_loaded_weight[local_expert_indices]
|
|
expert_id = local_expert_indices[0].item()
|
|
else:
|
|
# TODO: add EP support for non fused weights
|
|
pass
|
|
|
|
# Load the weight into the module parameter with corresponding
|
|
# shard id and expert id.
|
|
weight_loader(
|
|
param,
|
|
new_loaded_weight,
|
|
full_param_name,
|
|
shard_id=shard_id,
|
|
expert_id=expert_id,
|
|
)
|
|
loaded_params.add(full_param_name)
|
|
expert_param_loaded = True
|
|
|
|
return expert_param_loaded
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
# Name mapping from the parameter name to the shard name and
|
|
# corresponding shard id.
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
(".qkv_proj", ".q_proj", "q"),
|
|
(".qkv_proj", ".k_proj", "k"),
|
|
(".qkv_proj", ".v_proj", "v"),
|
|
(".gate_up_proj", ".gate_proj", 0),
|
|
(".gate_up_proj", ".up_proj", 1),
|
|
]
|
|
# Indicate whether the expert weights are fused into a single weight
|
|
# tensor.
|
|
fused_experts_params = False
|
|
# Expert parameter mapping for the case where the expert weights are
|
|
# not fused into a single weight tensor.
|
|
expert_params_mapping = SharedFusedMoE.make_expert_params_mapping(
|
|
ckpt_gate_proj_name="gate_proj",
|
|
ckpt_down_proj_name="down_proj",
|
|
ckpt_up_proj_name="up_proj",
|
|
num_experts=self.num_experts,
|
|
num_redundant_experts=self.n_redundant_experts,
|
|
)
|
|
# Expert parameter mapping for the case where the expert weights are
|
|
# fused into a single weight tensor.
|
|
expert_params_mapping_fused = SharedFusedMoE.make_expert_params_mapping(
|
|
ckpt_gate_proj_name="gate_up_proj",
|
|
ckpt_down_proj_name="down_proj",
|
|
ckpt_up_proj_name="gate_up_proj",
|
|
num_experts=1,
|
|
)
|
|
# All the module parameters.
|
|
params_dict = dict(self.named_parameters())
|
|
# The module parameters that have been loaded.
|
|
loaded_params: set[str] = set()
|
|
|
|
# Iterate over all the weights and load them into module parameters.
|
|
for name, loaded_weight in weights:
|
|
# If the name contains "experts.gate_up_proj" or "experts.down_proj"
|
|
# without the expert indices, it means the expert weights are fused
|
|
# into a single weight tensor across all experts.
|
|
if "experts.gate_up_proj" in name or "experts.down_proj" in name:
|
|
fused_experts_params = True
|
|
expert_params_mapping = expert_params_mapping_fused
|
|
|
|
# If kv cache quantization scales exist and the weight name
|
|
# corresponds to one of the kv cache quantization scales, load
|
|
# them.
|
|
if self.quant_config is not None and (
|
|
scale_name := self.quant_config.get_cache_scale(name)
|
|
):
|
|
param = params_dict[scale_name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
loaded_weight = (
|
|
loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0]
|
|
)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(scale_name)
|
|
continue
|
|
|
|
# Iterate over stacked_params_mapping to check if the current weight
|
|
# is one of the stacked parameters. If so, load the weight with the
|
|
# corresponding shard id. Note that MoE weights are handled
|
|
# separately in the else block.
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
# Skip if the current weight is not one of the stacked
|
|
# parameters or if the current weight is a MoE weight.
|
|
if weight_name not in name or "experts" in name:
|
|
continue
|
|
|
|
# For ModelOpt checkpoints, we need to rename the self_attn
|
|
# weight/weight_scale names except for kv cache scales.
|
|
if not (
|
|
name.endswith((".k_scale", ".v_scale")) and "self_attn" in name
|
|
):
|
|
name = name.replace(weight_name, param_name)
|
|
|
|
# Skip if the current weight corresponds to a parameter that
|
|
# does not exist on the current PP (pipeline parallel) rank.
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
# Remap kv cache scale names for ModelOpt checkpoints.
|
|
# TODO: ModelOpt should implement get_cache_scale() such that
|
|
# kv cache scale name remapping can be done there.
|
|
if name.endswith("scale"):
|
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
|
if name is None:
|
|
continue
|
|
|
|
# Load the weight into the module parameter with corresponding
|
|
# shard id and exit the for loop and the else block.
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
|
|
if weight_loader == default_weight_loader:
|
|
weight_loader(param, loaded_weight)
|
|
else:
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
|
|
loaded_params.add(name)
|
|
break
|
|
|
|
# Handle normal (non-stacked) weights and MoE weights.
|
|
else:
|
|
# First, try to load MoE weights using load_moe_expert_weights.
|
|
# If successful, move on to next loaded weight.
|
|
if self.load_moe_expert_weights(
|
|
name,
|
|
loaded_weight,
|
|
params_dict,
|
|
loaded_params,
|
|
expert_params_mapping,
|
|
fused=fused_experts_params,
|
|
):
|
|
continue
|
|
|
|
# Skip if the current weight corresponds to a parameter that
|
|
# does not exist on the current PP (pipeline parallel) rank.
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
# Handle flat expert scale parameters that don't match
|
|
# per-expert patterns, i.e. one weight scale tensor for all
|
|
# experts.
|
|
scale_names = [
|
|
"w13_input_scale",
|
|
"w13_weight_scale",
|
|
"w2_input_scale",
|
|
"w2_weight_scale",
|
|
]
|
|
if "experts." in name and any(
|
|
scale_name in name for scale_name in scale_names
|
|
):
|
|
param = params_dict[name]
|
|
weight_loader = getattr(
|
|
param, "weight_loader", default_weight_loader
|
|
)
|
|
|
|
# If weight loader supports special moe loading, use it to
|
|
# avoid expensive runtime reflection
|
|
if getattr(weight_loader, "supports_moe_loading", False):
|
|
# Map the weight name to the corresponding shard id.
|
|
shard_id = "w2" if "w2_" in name else "w1"
|
|
|
|
# Transpose if weight scales are FP8 block scales with
|
|
# three dimensions:
|
|
# [num_experts, hidden_in, hidden_out].
|
|
if (
|
|
name.endswith("weight_scale")
|
|
and loaded_weight.dtype == torch.float8_e4m3fn
|
|
and loaded_weight.ndim == 3
|
|
):
|
|
loaded_weight = loaded_weight.transpose(-1, -2)
|
|
|
|
# Load the weight into the module parameter with
|
|
# corresponding shard id and expert id.
|
|
weight_loader(
|
|
param, loaded_weight, name, shard_id=shard_id, expert_id=0
|
|
)
|
|
|
|
else:
|
|
# Regular weight loader (handles both
|
|
# param.weight_loader and default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
|
|
loaded_params.add(name)
|
|
continue
|
|
|
|
# Handle normal (non-stacked, non-MoE) weights.
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
|
|
# Finally, return the set of loaded parameters.
|
|
return loaded_params
|
|
|
|
|
|
class Llama4ForCausalLM(LlamaForCausalLM, MixtureOfExperts):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
|
|
"gate_up_proj": ["gate_proj", "up_proj"],
|
|
}
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
# update temperature tuning config from generation config
|
|
gen_config = vllm_config.model_config.try_get_generation_config()
|
|
gen_config.update(vllm_config.model_config.override_generation_config)
|
|
# enable temperature tuning by default when max_model_len > 32K
|
|
default_attn_temperature_tuning = vllm_config.model_config.max_model_len > 32768
|
|
vllm_config.model_config.hf_config.attn_temperature_tuning = gen_config.get(
|
|
"attn_temperature_tuning", default_attn_temperature_tuning
|
|
)
|
|
|
|
super().__init__(
|
|
vllm_config=vllm_config, prefix=prefix, layer_type=Llama4DecoderLayer
|
|
)
|
|
# Set MoE hyperparameters
|
|
self.set_moe_parameters()
|
|
|
|
def set_moe_parameters(self):
|
|
self.expert_weights = []
|
|
|
|
self.moe_layers = []
|
|
example_moe = None
|
|
for layer in self.model.layers:
|
|
assert isinstance(layer, Llama4DecoderLayer)
|
|
if isinstance(layer.feed_forward, Llama4MoE):
|
|
# Pick last one layer since the first ones may be dense layers.
|
|
example_moe = layer.feed_forward
|
|
self.moe_layers.append(layer.feed_forward.experts)
|
|
|
|
if example_moe is None:
|
|
self.num_moe_layers = 0
|
|
self.num_expert_groups = 0
|
|
self.num_logical_experts = 0
|
|
self.num_physical_experts = 0
|
|
self.num_local_physical_experts = 0
|
|
self.num_routed_experts = 0
|
|
self.num_shared_experts = 0
|
|
self.num_redundant_experts = 0
|
|
logger.warning("No Llama4MoE layer found in model.layers.")
|
|
else:
|
|
self.num_moe_layers = len(self.moe_layers)
|
|
self.num_expert_groups = 1
|
|
self.num_logical_experts = example_moe.n_logical_experts
|
|
self.num_physical_experts = example_moe.n_physical_experts
|
|
self.num_local_physical_experts = example_moe.n_local_physical_experts
|
|
self.num_routed_experts = example_moe.n_routed_experts
|
|
self.num_shared_experts = example_moe.n_shared_experts
|
|
self.num_redundant_experts = example_moe.n_redundant_experts
|
|
|
|
def update_physical_experts_metadata(
|
|
self,
|
|
num_physical_experts: int,
|
|
num_local_physical_experts: int,
|
|
) -> None:
|
|
assert self.num_local_physical_experts == num_local_physical_experts
|
|
self.num_physical_experts = num_physical_experts
|
|
self.num_local_physical_experts = num_local_physical_experts
|
|
self.num_redundant_experts = num_physical_experts - self.num_logical_experts
|
|
for layer in self.model.layers:
|
|
if isinstance(layer.feed_forward, Llama4MoE):
|
|
moe = layer.feed_forward
|
|
moe.n_local_physical_experts = num_local_physical_experts
|
|
moe.n_physical_experts = num_physical_experts
|
|
moe.n_redundant_experts = self.num_redundant_experts
|
|
moe.experts.update_expert_map()
|
|
|
|
def _init_model(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
layer_type: type[Llama4DecoderLayer] = Llama4DecoderLayer,
|
|
):
|
|
return Llama4Model(
|
|
vllm_config=vllm_config, prefix=prefix, layer_type=layer_type
|
|
)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(
|
|
self,
|
|
skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
|
|
)
|
|
weights = [
|
|
self.permute_qk_weight_for_rotary(name, loaded_weight)
|
|
for name, loaded_weight in weights
|
|
]
|
|
return loader.load_weights(weights)
|
|
|
|
def permute_qk_weight_for_rotary(
|
|
self,
|
|
name: str,
|
|
loaded_weight: torch.Tensor,
|
|
) -> tuple[str, torch.Tensor]:
|
|
# Helper function to permute the weight's channels
|
|
def permute(w: torch.Tensor, n_heads: int, is_weight_scale: bool):
|
|
# Calculate the expected shape of the weight.
|
|
# Do not rely on w's shape, as it may be in another layout.
|
|
attn_in = self.config.head_dim * n_heads
|
|
attn_out = self.config.hidden_size
|
|
|
|
# If the weight is FP4 packed as uint8, we need to divide attn_out
|
|
# by 2.
|
|
if w.dtype == torch.uint8 and w.shape[1] * 2 == attn_out:
|
|
attn_out = attn_out // 2
|
|
|
|
# If the weight is a weight scale, we need to divide attn_out by
|
|
# block size, which is currently 16.
|
|
elif (
|
|
w.dtype == torch.float8_e4m3fn
|
|
and is_weight_scale
|
|
and w.shape[1] * 16 == attn_out
|
|
):
|
|
attn_out = attn_out // 16
|
|
|
|
return (
|
|
w.view(n_heads, attn_in // n_heads // 2, 2, attn_out)
|
|
.transpose(1, 2)
|
|
.reshape(attn_in, attn_out)
|
|
)
|
|
|
|
modules = name.split(".")
|
|
|
|
# Permute Q/K weights and weight block scales for rotary embedding
|
|
is_weight = modules[-1] == "weight"
|
|
is_nvfp4_weight_scale = (
|
|
modules[-1] == "weight_scale" and loaded_weight.dtype == torch.float8_e4m3fn
|
|
)
|
|
|
|
if is_weight or is_nvfp4_weight_scale:
|
|
if "wk" in modules or "k_proj" in modules:
|
|
loaded_weight = permute(
|
|
loaded_weight,
|
|
self.config.num_key_value_heads,
|
|
is_nvfp4_weight_scale,
|
|
)
|
|
elif "wq" in modules or "q_proj" in modules:
|
|
loaded_weight = permute(
|
|
loaded_weight,
|
|
self.config.num_attention_heads,
|
|
is_nvfp4_weight_scale,
|
|
)
|
|
|
|
return name, loaded_weight
|