mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 20:15:41 +08:00
474 lines
16 KiB
Python
474 lines
16 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Copyright 2024 The Qwen team.
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only Qwen2-Audio model compatible with HuggingFace weights."""
|
|
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from typing import Annotated, Any, Literal, TypeAlias
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import BatchFeature
|
|
from transformers.models.qwen2_audio import (
|
|
Qwen2AudioConfig,
|
|
Qwen2AudioEncoder,
|
|
Qwen2AudioProcessor,
|
|
)
|
|
from transformers.models.whisper import WhisperFeatureExtractor
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.config.multimodal import BaseDummyOptions
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (
|
|
AudioItem,
|
|
ModalityData,
|
|
MultiModalDataDict,
|
|
MultiModalFieldConfig,
|
|
MultiModalKwargsItems,
|
|
)
|
|
from vllm.multimodal.parse import (
|
|
AudioProcessorItems,
|
|
DictEmbeddingItems,
|
|
ModalityDataItems,
|
|
MultiModalDataItems,
|
|
MultiModalDataParser,
|
|
)
|
|
from vllm.multimodal.processing import (
|
|
BaseMultiModalProcessor,
|
|
BaseProcessingInfo,
|
|
PromptReplacement,
|
|
PromptUpdate,
|
|
PromptUpdateDetails,
|
|
)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
|
|
|
from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
|
|
from .utils import AutoWeightsLoader, init_vllm_registered_model, maybe_prefix
|
|
|
|
|
|
# # === Audio Inputs === #
|
|
class Qwen2AudioFeatureInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- na: Number of audios
|
|
- nmb: Number of mel bins
|
|
"""
|
|
|
|
type: Literal["audio_features"]
|
|
input_features: Annotated[
|
|
torch.Tensor | list[torch.Tensor],
|
|
TensorShape("na", "nmb", 3000),
|
|
]
|
|
|
|
feature_attention_mask: Annotated[
|
|
torch.Tensor,
|
|
TensorShape("na", 3000),
|
|
]
|
|
|
|
|
|
class Qwen2AudioEmbeddingInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- bn: Batch size
|
|
- naf: Number of audio features
|
|
- hs: Hidden size (must match the hidden size of language model
|
|
backbone)
|
|
"""
|
|
|
|
type: Literal["audio_embeds"] = "audio_embeds"
|
|
|
|
audio_embeds: Annotated[
|
|
list[torch.Tensor],
|
|
TensorShape("bn", "naf", "hs"),
|
|
]
|
|
|
|
|
|
Qwen2AudioInputs: TypeAlias = Qwen2AudioFeatureInputs | Qwen2AudioEmbeddingInputs
|
|
|
|
# === Audio Encoder === #
|
|
|
|
|
|
class Qwen2AudioMultiModalProjector(nn.Module):
|
|
def __init__(self, audio_hidden_size: int, text_hidden_size: int):
|
|
super().__init__()
|
|
self.linear = nn.Linear(audio_hidden_size, text_hidden_size, bias=True)
|
|
|
|
def forward(self, audio_features):
|
|
hidden_states = self.linear(audio_features)
|
|
return hidden_states
|
|
|
|
|
|
# From Qwen2AudioEncoder._get_feat_extract_output_lengths
|
|
def _get_feat_extract_output_lengths(input_lengths: torch.Tensor):
|
|
feat_lengths = (input_lengths - 1) // 2 + 1
|
|
output_lengths = (feat_lengths - 2) // 2 + 1
|
|
return feat_lengths, output_lengths
|
|
|
|
|
|
class Qwen2AudioProcessingInfo(BaseProcessingInfo):
|
|
def get_hf_config(self):
|
|
return self.ctx.get_hf_config(Qwen2AudioConfig)
|
|
|
|
def get_hf_processor(self, **kwargs: object) -> Qwen2AudioProcessor:
|
|
return self.ctx.get_hf_processor(Qwen2AudioProcessor, **kwargs)
|
|
|
|
def get_feature_extractor(self, **kwargs: object) -> WhisperFeatureExtractor:
|
|
hf_processor = self.get_hf_processor(**kwargs)
|
|
feature_extractor = hf_processor.feature_extractor # type: ignore
|
|
assert isinstance(feature_extractor, WhisperFeatureExtractor)
|
|
return feature_extractor
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
|
|
return {"audio": None}
|
|
|
|
|
|
class Qwen2AudioDummyInputsBuilder(BaseDummyInputsBuilder[Qwen2AudioProcessingInfo]):
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
num_audios = mm_counts.get("audio", 0)
|
|
|
|
hf_processor = self.info.get_hf_processor()
|
|
audio_token = hf_processor.audio_token
|
|
|
|
return audio_token * num_audios
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
mm_options: Mapping[str, BaseDummyOptions] | None = None,
|
|
) -> MultiModalDataDict:
|
|
feature_extractor = self.info.get_feature_extractor()
|
|
|
|
sampling_rate = feature_extractor.sampling_rate
|
|
audio_len = feature_extractor.chunk_length * sampling_rate
|
|
num_audios = mm_counts.get("audio", 0)
|
|
|
|
audio_overrides = mm_options.get("audio") if mm_options else None
|
|
|
|
return {
|
|
"audio": self._get_dummy_audios(
|
|
length=audio_len, num_audios=num_audios, overrides=audio_overrides
|
|
)
|
|
}
|
|
|
|
|
|
def _qwen2audio_field_config(hf_inputs: Mapping[str, torch.Tensor]):
|
|
return dict(
|
|
audio_embeds=MultiModalFieldConfig.batched("audio"),
|
|
input_features=MultiModalFieldConfig.batched("audio"),
|
|
feature_attention_mask=MultiModalFieldConfig.batched("audio"),
|
|
)
|
|
|
|
|
|
class Qwen2AudioMultiModalDataParser(MultiModalDataParser):
|
|
def _parse_audio_data(
|
|
self,
|
|
data: dict[str, torch.Tensor] | ModalityData[AudioItem],
|
|
) -> ModalityDataItems[Any, Any] | None:
|
|
if isinstance(data, dict):
|
|
return DictEmbeddingItems(
|
|
data,
|
|
modality="audio",
|
|
required_fields={"audio_embeds"},
|
|
fields_factory=_qwen2audio_field_config,
|
|
)
|
|
|
|
return super()._parse_audio_data(data)
|
|
|
|
|
|
class Qwen2AudioMultiModalProcessor(BaseMultiModalProcessor[Qwen2AudioProcessingInfo]):
|
|
def _get_data_parser(self) -> MultiModalDataParser:
|
|
feature_extractor = self.info.get_feature_extractor()
|
|
return Qwen2AudioMultiModalDataParser(target_sr=feature_extractor.sampling_rate)
|
|
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, Any],
|
|
tok_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
# NOTE - we rename audios -> audio in mm data because transformers has
|
|
# deprecated audios for the qwen2audio processor and will remove
|
|
# support for it in transformers 4.54.
|
|
audios = mm_data.pop("audios", [])
|
|
if audios:
|
|
mm_data["audio"] = audios
|
|
|
|
# Text-only input not supported in composite processor
|
|
if not mm_data.get("audio", []):
|
|
prompt_ids = self.info.get_tokenizer().encode(prompt)
|
|
prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids)
|
|
return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")
|
|
|
|
feature_extractor = self.info.get_feature_extractor(**mm_kwargs)
|
|
mm_kwargs = dict(
|
|
**mm_kwargs,
|
|
sampling_rate=feature_extractor.sampling_rate,
|
|
)
|
|
|
|
return super()._call_hf_processor(
|
|
prompt=prompt,
|
|
mm_data=mm_data,
|
|
mm_kwargs=mm_kwargs,
|
|
tok_kwargs=tok_kwargs,
|
|
)
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return _qwen2audio_field_config(hf_inputs)
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargsItems,
|
|
) -> Sequence[PromptUpdate]:
|
|
processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
|
|
tokenizer = self.info.get_tokenizer()
|
|
vocab = tokenizer.get_vocab()
|
|
|
|
# Use getattr with default to be compatible with transformers<4.48
|
|
audio_token = getattr(processor, "audio_token", "<|AUDIO|>")
|
|
audio_bos_token = getattr(processor, "audio_bos_token", "<|audio_bos|>")
|
|
audio_eos_token = getattr(processor, "audio_eos_token", "<|audio_eos|>")
|
|
|
|
audio_token_id = vocab[audio_token]
|
|
audio_bos_id = vocab[audio_bos_token]
|
|
audio_eos_id = vocab[audio_eos_token]
|
|
|
|
out_mm_data = out_mm_kwargs.get_data()
|
|
feature_attention_mask = out_mm_data.get("feature_attention_mask")
|
|
if feature_attention_mask is None:
|
|
audio_output_lengths = []
|
|
else:
|
|
assert isinstance(feature_attention_mask, torch.Tensor)
|
|
_, audio_output_lens = _get_feat_extract_output_lengths(
|
|
feature_attention_mask.sum(-1)
|
|
)
|
|
|
|
audio_output_lengths = audio_output_lens.tolist()
|
|
|
|
def get_replacement_qwen2_audio(item_idx: int):
|
|
if audio_output_lengths:
|
|
num_features = audio_output_lengths[item_idx]
|
|
else:
|
|
audio_embeds = out_mm_data["audio_embeds"][item_idx]
|
|
assert len(audio_embeds.shape) == 2, "audio_embeds must be a 2D tensor"
|
|
num_features = audio_embeds.shape[0]
|
|
|
|
if num_features == 0:
|
|
audios = mm_items.get_items("audio", AudioProcessorItems)
|
|
audio_len = audios.get_audio_length(item_idx)
|
|
|
|
raise ValueError(
|
|
f"The audio (len={audio_len}) is too short "
|
|
"to be represented inside the model"
|
|
)
|
|
|
|
audio_tokens = [audio_token_id] * num_features
|
|
|
|
return PromptUpdateDetails.select_token_id(
|
|
[audio_bos_id] + audio_tokens + [audio_eos_id],
|
|
embed_token_id=audio_token_id,
|
|
)
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="audio",
|
|
target=audio_token,
|
|
replacement=get_replacement_qwen2_audio,
|
|
)
|
|
]
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
Qwen2AudioMultiModalProcessor,
|
|
info=Qwen2AudioProcessingInfo,
|
|
dummy_inputs=Qwen2AudioDummyInputsBuilder,
|
|
)
|
|
class Qwen2AudioForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
|
|
merge_by_field_config = True
|
|
|
|
@classmethod
|
|
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
|
|
if modality.startswith("audio"):
|
|
return f"Audio {i}: <|audio_bos|><|AUDIO|><|audio_eos|>"
|
|
|
|
raise ValueError("Only audio modality is supported")
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
self.config = config
|
|
self.multimodal_config = multimodal_config
|
|
|
|
self.audio_tower = Qwen2AudioEncoder(config.audio_config)
|
|
self.multi_modal_projector = Qwen2AudioMultiModalProjector(
|
|
config.audio_config.d_model, config.text_config.hidden_size
|
|
)
|
|
|
|
self.quant_config = quant_config
|
|
|
|
self.language_model = init_vllm_registered_model(
|
|
vllm_config=vllm_config,
|
|
hf_config=config.text_config,
|
|
prefix=maybe_prefix(prefix, "language_model"),
|
|
architectures=["Qwen2ForCausalLM"],
|
|
)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.language_model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def _parse_and_validate_audio_input(
|
|
self, **kwargs: object
|
|
) -> Qwen2AudioInputs | None:
|
|
input_features = kwargs.pop("input_features", None)
|
|
audio_embeds = kwargs.pop("audio_embeds", None)
|
|
feature_attention_mask = kwargs.pop("feature_attention_mask", None)
|
|
|
|
if input_features is None and audio_embeds is None:
|
|
return None
|
|
|
|
if audio_embeds is not None:
|
|
return Qwen2AudioEmbeddingInputs(
|
|
type="audio_embeds", audio_embeds=audio_embeds
|
|
)
|
|
|
|
if input_features is not None:
|
|
return Qwen2AudioFeatureInputs(
|
|
type="audio_features",
|
|
input_features=input_features,
|
|
feature_attention_mask=feature_attention_mask,
|
|
)
|
|
|
|
raise AssertionError("This line should be unreachable.")
|
|
|
|
def _process_audio_input(
|
|
self, audio_input: Qwen2AudioInputs
|
|
) -> torch.Tensor | tuple[torch.Tensor, ...]:
|
|
if audio_input["type"] == "audio_embeds":
|
|
audio_embeds = audio_input["audio_embeds"]
|
|
return tuple(audio_embeds)
|
|
|
|
input_features = audio_input["input_features"]
|
|
feature_attention_mask = audio_input["feature_attention_mask"]
|
|
|
|
audio_feat_lengths, audio_output_lengths = (
|
|
self.audio_tower._get_feat_extract_output_lengths(
|
|
feature_attention_mask.sum(-1)
|
|
)
|
|
)
|
|
|
|
batch_size, _, max_mel_seq_len = input_features.shape
|
|
max_seq_len = (max_mel_seq_len - 2) // 2 + 1
|
|
# Create a sequence tensor of shape (batch_size, max_seq_len)
|
|
seq_range = (
|
|
torch.arange(
|
|
0,
|
|
max_seq_len,
|
|
dtype=audio_feat_lengths.dtype,
|
|
device=audio_feat_lengths.device,
|
|
)
|
|
.unsqueeze(0)
|
|
.expand(batch_size, max_seq_len)
|
|
)
|
|
lengths_expand = audio_feat_lengths.unsqueeze(-1).expand(
|
|
batch_size, max_seq_len
|
|
)
|
|
# Create mask
|
|
padding_mask = seq_range >= lengths_expand
|
|
|
|
audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand(
|
|
batch_size, 1, max_seq_len, max_seq_len
|
|
)
|
|
audio_attention_mask = audio_attention_mask_.to(
|
|
dtype=self.audio_tower.conv1.weight.dtype,
|
|
device=self.audio_tower.conv1.weight.device,
|
|
)
|
|
audio_attention_mask[audio_attention_mask_] = float("-inf")
|
|
|
|
audio_outputs = self.audio_tower(
|
|
input_features, attention_mask=audio_attention_mask
|
|
)
|
|
selected_audio_feature = audio_outputs.last_hidden_state
|
|
audio_features = self.multi_modal_projector(selected_audio_feature)
|
|
num_audios, max_audio_tokens, embed_dim = audio_features.shape
|
|
audio_output_lengths = audio_output_lengths.unsqueeze(1)
|
|
audio_features_mask = (
|
|
torch.arange(max_audio_tokens)
|
|
.expand(num_audios, max_audio_tokens)
|
|
.to(audio_output_lengths.device)
|
|
< audio_output_lengths
|
|
)
|
|
masked_audio_features = audio_features[audio_features_mask].view(-1, embed_dim)
|
|
|
|
# Split to tuple of embeddings for individual audio input.
|
|
return torch.split(
|
|
masked_audio_features, audio_output_lengths.flatten().tolist()
|
|
)
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|
|
|
|
def get_multimodal_embeddings(self, **kwargs: object) -> MultiModalEmbeddings:
|
|
audio_input = self._parse_and_validate_audio_input(**kwargs)
|
|
if audio_input is None:
|
|
return []
|
|
masked_audio_features = self._process_audio_input(audio_input)
|
|
return masked_audio_features
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs: object,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
hidden_states = self.language_model.model(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds=inputs_embeds
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
return self.language_model.compute_logits(hidden_states)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights)
|