vllm/vllm/model_executor/models/qwen3_vl_moe.py
Jee Jee Li daec4d2624
[Model]Improve Qwen3VLMoeForConditionalGeneration packed_modules_mapping (#27096)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-10-17 04:47:00 -07:00

416 lines
17 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright 2025 The vLLM team.
# Copyright 2025 The Qwen Team.
# Copyright 2025 The HuggingFace Inc. team.
# All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Qwen3-VL-MoE model compatible with HuggingFace weights."""
import typing
from collections.abc import Callable, Iterable
from itertools import islice
import torch
from transformers.models.qwen3_vl_moe.configuration_qwen3_vl_moe import Qwen3VLMoeConfig
from vllm.compilation.decorators import support_torch_compile
from vllm.config import VllmConfig
from vllm.distributed import get_pp_group
from vllm.logger import init_logger
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader,
maybe_remap_kv_scale_name,
)
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.sequence import IntermediateTensors
from .qwen3_moe import Qwen3MoeForCausalLM, Qwen3MoeModel
from .qwen3_vl import (
Qwen3_VisionTransformer,
Qwen3VLDummyInputsBuilder,
Qwen3VLForConditionalGeneration,
Qwen3VLMultiModalProcessor,
Qwen3VLProcessingInfo,
)
from .utils import is_pp_missing_parameter, maybe_prefix
logger = init_logger(__name__)
class Qwen3VLMoeProcessingInfo(Qwen3VLProcessingInfo):
def get_hf_config(self):
return self.ctx.get_hf_config(Qwen3VLMoeConfig)
@support_torch_compile(
dynamic_arg_dims={
"input_ids": 0,
# positions is of shape (3, seq_len) if mrope is enabled for qwen2-vl,
# otherwise (seq_len, ).
"positions": -1,
"intermediate_tensors": 0,
"inputs_embeds": 0,
# the same shape as input_embeds
"deepstack_input_embeds": 0,
}
)
class Qwen3MoeLLMModel(Qwen3MoeModel):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
if not get_pp_group().is_first_rank:
assert self.start_layer >= len(
vllm_config.model_config.hf_config.vision_config.deepstack_visual_indexes
), (
"start_layer should be greater than or equal to "
"len(deepstack_visual_indexes)"
)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
deepstack_input_embeds: IntermediateTensors | None = None,
) -> torch.Tensor | IntermediateTensors:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for layer_idx, layer in islice(
enumerate(self.layers), self.start_layer, self.end_layer
):
hidden_states, residual = layer(
positions,
hidden_states,
residual,
)
if deepstack_input_embeds is not None and layer_idx in range(
0, len(deepstack_input_embeds)
):
hidden_states = (
hidden_states
+ deepstack_input_embeds[f"deepstack_input_embeds_{layer_idx}"]
)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{"hidden_states": hidden_states, "residual": residual}
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
def load_fused_expert_weights(
self,
name: str,
params_dict: dict,
loaded_weight: torch.Tensor,
shard_id: str,
num_experts: int,
) -> bool:
param = params_dict[name]
weight_loader = typing.cast(Callable[..., bool], param.weight_loader)
loaded_local_expert = False
for expert_id in range(num_experts):
curr_expert_weight = loaded_weight[expert_id]
success = weight_loader(
param,
curr_expert_weight,
name,
shard_id,
expert_id,
return_success=True,
)
if success:
loaded_local_expert = True
return loaded_local_expert
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
# Skip loading extra parameters for GPTQ/modelopt models.
ignore_suffixes = (
".bias",
"_bias",
".k_scale",
"_k_scale",
".v_scale",
"_v_scale",
".weight_scale",
"_weight_scale",
".input_scale",
"_input_scale",
)
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
expert_params_mapping = self.get_expert_mapping()
is_fused_expert = False
fused_expert_params_mapping = [
("experts.w13_weight", "experts.gate_up_proj", 0, "w1"),
("experts.w2_weight", "experts.down_proj", 0, "w2"),
]
num_experts = self.config.num_experts
for name, loaded_weight in weights:
for param_name, weight_name, shard_id in stacked_params_mapping:
if "experts.gate_up_proj" in name or "experts.down_proj" in name:
is_fused_expert = True
expert_params_mapping = fused_expert_params_mapping
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
# We have mlp.experts[0].gate_proj in the checkpoint.
# Since we handle the experts below in expert_params_mapping,
# we need to skip here BEFORE we update the name, otherwise
# name will be updated to mlp.experts[0].gate_up_proj, which
# will then be updated below in expert_params_mapping
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
if "mlp.experts" in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra parameters for GPTQ/modelopt models.
if name.endswith(ignore_suffixes) and name not in params_dict:
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
if name.endswith("scale"):
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
if name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
if weight_loader == default_weight_loader:
weight_loader(param, loaded_weight)
else:
weight_loader(param, loaded_weight, shard_id)
break
else:
is_expert_weight = False
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
# Anyway, this is an expert weight and should not be
# attempted to load as other weights later
is_expert_weight = True
name_mapped = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name_mapped, self):
continue
if is_fused_expert:
loaded_weight = loaded_weight.transpose(-1, -2) # no bias
if "experts.gate_up_proj" in name:
loaded_weight = loaded_weight.chunk(2, dim=-2)
success_w1 = self.load_fused_expert_weights(
name_mapped,
params_dict,
loaded_weight[0],
"w1",
num_experts,
)
success_w3 = self.load_fused_expert_weights(
name_mapped,
params_dict,
loaded_weight[1],
"w3",
num_experts,
)
success = success_w1 and success_w3
else:
# down_proj
success = self.load_fused_expert_weights(
name_mapped,
params_dict,
loaded_weight,
shard_id,
num_experts,
)
else:
# Skip loading extra parameters for GPTQ/modelopt models
if (
name_mapped.endswith(ignore_suffixes)
and name_mapped not in params_dict
):
continue
param = params_dict[name_mapped]
# We should ask the weight loader to return success or
# not here since otherwise we may skip experts with
# other available replicas.
weight_loader = typing.cast(
Callable[..., bool], param.weight_loader
)
success = weight_loader(
param,
loaded_weight,
name_mapped,
shard_id=shard_id,
expert_id=expert_id,
return_success=True,
)
if success:
name = name_mapped
break
else:
if is_expert_weight:
# We've checked that this is an expert weight
# However it's not mapped locally to this rank
# So we simply skip it
continue
# Skip loading extra parameters for GPTQ/modelopt models.
if name.endswith(ignore_suffixes) and name not in params_dict:
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
# Remapping the name of FP8 kv-scale.
if name.endswith("kv_scale"):
remapped_kv_scale_name = name.replace(
".kv_scale", ".attn.kv_scale"
)
if remapped_kv_scale_name not in params_dict:
logger.warning_once(
"Found kv scale in the checkpoint (e.g. %s), but not found the expected name in the model (e.g. %s). kv-scale is not loaded.", # noqa: E501
name,
remapped_kv_scale_name,
)
continue
else:
name = remapped_kv_scale_name
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class Qwen3MoeLLMForCausalLM(Qwen3MoeForCausalLM):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super(Qwen3MoeForCausalLM, self).__init__()
self.config = vllm_config.model_config.hf_config.text_config
self.quant_config = vllm_config.quant_config
self.model = Qwen3MoeLLMModel(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
)
self.lm_head = ParallelLMHead(
self.config.vocab_size,
self.config.hidden_size,
quant_config=self.quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
if self.config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
self.logits_processor = LogitsProcessor(self.config.vocab_size)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors
)
@MULTIMODAL_REGISTRY.register_processor(
Qwen3VLMultiModalProcessor,
info=Qwen3VLMoeProcessingInfo,
dummy_inputs=Qwen3VLDummyInputsBuilder,
)
class Qwen3VLMoeForConditionalGeneration(Qwen3VLForConditionalGeneration):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super(Qwen3VLForConditionalGeneration, self).__init__()
config: Qwen3VLMoeConfig = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
self.config = config
self.multimodal_config = multimodal_config
self.use_data_parallel = multimodal_config.mm_encoder_tp_mode == "data"
if not multimodal_config.get_limit_per_prompt(
"image"
) and not multimodal_config.get_limit_per_prompt("video"):
self.visual = None
else:
self.visual = Qwen3_VisionTransformer(
config.vision_config,
norm_eps=getattr(config, "rms_norm_eps", 1e-6),
quant_config=quant_config,
prefix=maybe_prefix(prefix, "visual"),
use_data_parallel=self.use_data_parallel,
)
self.language_model = Qwen3MoeLLMForCausalLM(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "language_model")
)
# Whether to include the gate_up_proj mapping is determined by
# the language model.
self.packed_modules_mapping = (
self.packed_modules_mapping | self.language_model.packed_modules_mapping
)
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors
)
self.use_deepstack = hasattr(config.vision_config, "deepstack_visual_indexes")
self.deepstack_num_level = (
len(config.vision_config.deepstack_visual_indexes)
if self.use_deepstack
else 0
)
# register buffer for deepstack
if self.use_deepstack and self.visual is not None:
self.deepstack_input_embeds = [
torch.zeros(
vllm_config.scheduler_config.max_num_batched_tokens,
config.text_config.hidden_size,
)
for _ in range(self.deepstack_num_level)
]
else:
self.deepstack_input_embeds = None
self.visual_dim = config.vision_config.out_hidden_size
self.multiscale_dim = self.visual_dim * self.deepstack_num_level