vllm/vllm/benchmarks/lib/endpoint_request_func.py
Cyrus Leung b7030d962b
[Benchmark] Enable benchmark to run with encoding_format="bytes" (#27467)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-10-24 11:16:50 +00:00

778 lines
26 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""The request function for API endpoints."""
import io
import json
import os
import sys
import time
import traceback
from collections.abc import Awaitable
from dataclasses import dataclass, field
from typing import Any, Literal, Protocol
import aiohttp
import regex as re
from tqdm.asyncio import tqdm
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
class StreamedResponseHandler:
"""Handles streaming HTTP responses by accumulating chunks until complete
messages are available."""
def __init__(self):
self.buffer = ""
def add_chunk(self, chunk_bytes: bytes) -> list[str]:
"""Add a chunk of bytes to the buffer and return any complete
messages."""
chunk_str = chunk_bytes.decode("utf-8")
self.buffer += chunk_str
messages = []
# Split by double newlines (SSE message separator)
while "\n\n" in self.buffer:
message, self.buffer = self.buffer.split("\n\n", 1)
message = message.strip()
if message:
messages.append(message)
# if self.buffer is not empty, check if it is a complete message
# by removing data: prefix and check if it is a valid JSON
if self.buffer.startswith("data: "):
message_content = self.buffer.removeprefix("data: ").strip()
if message_content == "[DONE]":
messages.append(self.buffer.strip())
self.buffer = ""
elif message_content:
try:
json.loads(message_content)
messages.append(self.buffer.strip())
self.buffer = ""
except json.JSONDecodeError:
# Incomplete JSON, wait for more chunks.
pass
return messages
@dataclass
class RequestFuncInput:
"""The input for the request function."""
prompt: str | list[str]
api_url: str
prompt_len: int
output_len: int
model: str
model_name: str | None = None
logprobs: int | None = None
extra_headers: dict | None = None
extra_body: dict | None = None
multi_modal_content: dict | list[dict] | None = None
ignore_eos: bool = False
language: str | None = None
request_id: str | None = None
@dataclass
class RequestFuncOutput:
"""The output of the request function including metrics."""
generated_text: str = ""
success: bool = False
latency: float = 0.0
output_tokens: int = 0
ttft: float = 0.0 # Time to first token
itl: list[float] = field(default_factory=list) # list of inter-token latencies
tpot: float = 0.0 # avg next-token latencies
prompt_len: int = 0
error: str = ""
start_time: float = 0.0
class RequestFunc(Protocol):
def __call__(
self,
request_func_input: RequestFuncInput,
session: aiohttp.ClientSession,
pbar: tqdm | None = None,
) -> Awaitable[RequestFuncOutput]: ...
def _validate_api_url(
api_url: str,
api_name: str,
expected_suffixes: str | set[str],
) -> None:
if isinstance(expected_suffixes, str):
expected_suffixes = {expected_suffixes}
expected_suffixes = {*expected_suffixes, "profile"}
if not api_url.endswith(tuple(expected_suffixes)):
raise ValueError(f"{api_name} URL must end with one of: {expected_suffixes}.")
def _update_payload_common(
payload: dict[str, Any],
request_func_input: RequestFuncInput,
) -> None:
if request_func_input.ignore_eos:
payload["ignore_eos"] = request_func_input.ignore_eos
if request_func_input.extra_body:
payload.update(request_func_input.extra_body)
def _update_headers_common(
headers: dict[str, Any],
request_func_input: RequestFuncInput,
) -> None:
if request_func_input.extra_headers:
headers |= request_func_input.extra_headers
if request_func_input.request_id:
headers["x-request-id"] = request_func_input.request_id
async def async_request_openai_completions(
request_func_input: RequestFuncInput,
session: aiohttp.ClientSession,
pbar: tqdm | None = None,
) -> RequestFuncOutput:
"""The async request function for the OpenAI Completions API.
Args:
request_func_input: The input for the request function.
pbar: The progress bar to display the progress.
Returns:
The output of the request function.
"""
api_url = request_func_input.api_url
_validate_api_url(api_url, "OpenAI Completions API", "completions")
payload = {
"model": request_func_input.model_name
if request_func_input.model_name
else request_func_input.model,
"prompt": request_func_input.prompt,
"temperature": 0.0,
"repetition_penalty": 1.0,
"max_tokens": request_func_input.output_len,
"logprobs": request_func_input.logprobs,
"stream": True,
"stream_options": {
"include_usage": True,
},
}
_update_payload_common(payload, request_func_input)
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
_update_headers_common(headers, request_func_input)
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
st = time.perf_counter()
output.start_time = st
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload, headers=headers) as response:
if response.status == 200:
first_chunk_received = False
handler = StreamedResponseHandler()
async for chunk_bytes in response.content.iter_any():
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
messages = handler.add_chunk(chunk_bytes)
for message in messages:
# NOTE: SSE comments (often used as pings) start with
# a colon. These are not JSON data payload and should
# be skipped.
if message.startswith(":"):
continue
chunk = message.removeprefix("data: ")
if chunk != "[DONE]":
data = json.loads(chunk)
# NOTE: Some completion API might have a last
# usage summary response without a token so we
# want to check a token was generated
if choices := data.get("choices"):
# Note that text could be empty here
# e.g. for special tokens
text = choices[0].get("text")
timestamp = time.perf_counter()
# First token
if not first_chunk_received:
first_chunk_received = True
ttft = time.perf_counter() - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
most_recent_timestamp = timestamp
generated_text += text or ""
elif usage := data.get("usage"):
output.output_tokens = usage.get("completion_tokens")
if first_chunk_received:
output.success = True
else:
output.success = False
output.error = (
"Never received a valid chunk to calculate TTFT."
"This response will be marked as failed!"
)
output.generated_text = generated_text
output.latency = most_recent_timestamp - st
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
def _get_chat_content(
request_func_input: RequestFuncInput,
mm_position: Literal["first", "last"] = "last",
) -> list[dict[str, Any]]:
text_contents = [{"type": "text", "text": request_func_input.prompt}]
mm_contents = []
if request_func_input.multi_modal_content:
mm_content = request_func_input.multi_modal_content
if isinstance(mm_content, list):
mm_contents.extend(request_func_input.multi_modal_content)
elif isinstance(mm_content, dict):
mm_contents.append(request_func_input.multi_modal_content)
else:
raise TypeError(
"multi_modal_content must be a dict or list[dict] for openai-chat"
)
if mm_position == "first":
return mm_contents + text_contents
return text_contents + mm_contents
async def async_request_openai_chat_completions(
request_func_input: RequestFuncInput,
session: aiohttp.ClientSession,
pbar: tqdm | None = None,
mm_position: Literal["first", "last"] = "last",
) -> RequestFuncOutput:
api_url = request_func_input.api_url
_validate_api_url(api_url, "OpenAI Chat Completions API", "chat/completions")
content = _get_chat_content(request_func_input, mm_position=mm_position)
payload = {
"model": request_func_input.model_name
if request_func_input.model_name
else request_func_input.model,
"messages": [
{"role": "user", "content": content},
],
"temperature": 0.0,
"max_completion_tokens": request_func_input.output_len,
"stream": True,
"stream_options": {
"include_usage": True,
},
}
_update_payload_common(payload, request_func_input)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
_update_headers_common(headers, request_func_input)
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0.0
st = time.perf_counter()
output.start_time = st
most_recent_timestamp = st
try:
async with session.post(url=api_url, json=payload, headers=headers) as response:
if response.status == 200:
handler = StreamedResponseHandler()
async for chunk_bytes in response.content.iter_any():
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
messages = handler.add_chunk(chunk_bytes)
for message in messages:
# NOTE: SSE comments (often used as pings) start with
# a colon. These are not JSON data payload and should
# be skipped.
if message.startswith(":"):
continue
chunk = message.removeprefix("data: ")
if chunk != "[DONE]":
timestamp = time.perf_counter()
data = json.loads(chunk)
if choices := data.get("choices"):
content = choices[0]["delta"].get("content")
# First token
if ttft == 0.0:
ttft = timestamp - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(timestamp - most_recent_timestamp)
generated_text += content or ""
elif usage := data.get("usage"):
output.output_tokens = usage.get("completion_tokens")
most_recent_timestamp = timestamp
output.generated_text = generated_text
output.success = True
output.latency = most_recent_timestamp - st
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def async_request_openai_audio(
request_func_input: RequestFuncInput,
session: aiohttp.ClientSession,
pbar: tqdm | None = None,
) -> RequestFuncOutput:
# Lazy import without PlaceholderModule to avoid vllm dep.
import soundfile
api_url = request_func_input.api_url
_validate_api_url(api_url, "OpenAI Audio API", {"transcriptions", "translations"})
content = [{"type": "text", "text": request_func_input.prompt}]
payload = {
"model": request_func_input.model_name
if request_func_input.model_name
else request_func_input.model,
"temperature": 0.0,
"max_completion_tokens": request_func_input.output_len,
"stream": True,
"language": "en",
# Flattened due to multipart/form-data
"stream_include_usage": True,
"stream_continuous_usage_stats": True,
}
_update_payload_common(payload, request_func_input)
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
_update_headers_common(headers, request_func_input)
# Send audio file
def to_bytes(y, sr):
buffer = io.BytesIO()
soundfile.write(buffer, y, sr, format="WAV")
buffer.seek(0)
return buffer
mm_audio = request_func_input.multi_modal_content
if not isinstance(mm_audio, dict) or "audio" not in mm_audio:
raise TypeError("multi_modal_content must be a dict containing 'audio'")
with to_bytes(*mm_audio["audio"]) as f:
form = aiohttp.FormData()
form.add_field("file", f, content_type="audio/wav")
for key, value in payload.items():
form.add_field(key, str(value))
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0.0
st = time.perf_counter()
output.start_time = st
most_recent_timestamp = st
try:
async with session.post(
url=api_url, data=form, headers=headers
) as response:
if response.status == 200:
handler = StreamedResponseHandler()
async for chunk_bytes in response.content.iter_any():
chunk_bytes = chunk_bytes.strip()
if not chunk_bytes:
continue
messages = handler.add_chunk(chunk_bytes)
for message in messages:
chunk = message.decode("utf-8").removeprefix("data: ")
if chunk != "[DONE]":
timestamp = time.perf_counter()
data = json.loads(chunk)
if choices := data.get("choices"):
content = choices[0]["delta"].get("content")
# First token
if ttft == 0.0:
ttft = timestamp - st
output.ttft = ttft
# Decoding phase
else:
output.itl.append(
timestamp - most_recent_timestamp
)
generated_text += content or ""
elif usage := data.get("usage"):
output.output_tokens = usage.get(
"completion_tokens"
)
most_recent_timestamp = timestamp
output.generated_text = generated_text
output.success = True
output.latency = most_recent_timestamp - st
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
if pbar:
pbar.update(1)
return output
async def _run_pooling_request(
session: aiohttp.ClientSession,
api_url: str,
payload: dict[str, Any],
headers: dict[str, Any],
pbar: tqdm | None = None,
) -> RequestFuncOutput:
output = RequestFuncOutput()
st = time.perf_counter()
output.start_time = st
try:
async with session.post(url=api_url, headers=headers, json=payload) as response:
if response.status == 200:
output.ttft = output.latency = time.perf_counter() - st
if payload.get("encoding_format", "float") == "bytes":
metadata = json.loads(response.headers["metadata"])
usage = metadata.get("usage", {})
else:
data = await response.json()
usage = data.get("usage", {})
output.success = True
output.generated_text = ""
output.prompt_len = usage.get("prompt_tokens", 0)
else:
output.success = False
output.error = response.reason or ""
except Exception as e:
output.success = False
output.error = str(e)
if pbar:
pbar.update(1)
return output
async def async_request_openai_embeddings(
request_func_input: RequestFuncInput,
session: aiohttp.ClientSession,
pbar: tqdm | None = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
_validate_api_url(api_url, "OpenAI Embeddings API", "embeddings")
payload = {
"model": request_func_input.model_name
if request_func_input.model_name
else request_func_input.model,
"input": request_func_input.prompt,
# Many embedding models have short context length,
# this is to avoid dropping some of the requests.
"truncate_prompt_tokens": -1,
}
_update_payload_common(payload, request_func_input)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
_update_headers_common(headers, request_func_input)
return await _run_pooling_request(
session,
api_url,
payload=payload,
headers=headers,
pbar=pbar,
)
async def async_request_vllm_rerank(
request_func_input: RequestFuncInput,
session: aiohttp.ClientSession,
pbar: tqdm | None = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
_validate_api_url(api_url, "vLLM score API", "rerank")
assert (
isinstance(request_func_input.prompt, list)
and len(request_func_input.prompt) > 1
)
payload = {
"model": request_func_input.model_name
if request_func_input.model_name
else request_func_input.model,
"query": request_func_input.prompt[0],
"documents": request_func_input.prompt[1:],
# Many reranker models have short context length,
# this is to avoid dropping some of the requests.
"truncate_prompt_tokens": -1,
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
_update_headers_common(headers, request_func_input)
return await _run_pooling_request(
session,
api_url,
payload=payload,
headers=headers,
pbar=pbar,
)
async def async_request_openai_embeddings_chat(
request_func_input: RequestFuncInput,
session: aiohttp.ClientSession,
pbar: tqdm | None = None,
mm_position: Literal["first", "last"] = "last",
) -> RequestFuncOutput:
api_url = request_func_input.api_url
_validate_api_url(api_url, "OpenAI Embeddings API", "embeddings")
content = _get_chat_content(request_func_input, mm_position=mm_position)
payload = {
"model": request_func_input.model_name
if request_func_input.model_name
else request_func_input.model,
"messages": [
{"role": "user", "content": content},
],
# Many embedding models have short context length,
# this is to avoid dropping some of the requests.
"truncate_prompt_tokens": -1,
}
_update_payload_common(payload, request_func_input)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
_update_headers_common(headers, request_func_input)
return await _run_pooling_request(
session,
api_url,
payload=payload,
headers=headers,
pbar=pbar,
)
def _try_extract_request_idx(request_func_input: RequestFuncInput):
if request_func_input.request_id:
match = re.search(r"(\d+)$", request_func_input.request_id)
if match:
try:
return int(match.group(1))
except ValueError:
pass
return None
def _preprocess_clip(request_func_input: RequestFuncInput):
if request_func_input.multi_modal_content:
# Image input
request_func_input.prompt = ""
def _preprocess_vlm2vec(request_func_input: RequestFuncInput):
if request_func_input.multi_modal_content:
request_idx = _try_extract_request_idx(request_func_input)
# Adjust the ratio manually if needed.
use_image_only_prompt = request_idx is None or request_idx % 2 == 0
if use_image_only_prompt:
# Image input
request_func_input.prompt = "Represent the given image."
else:
# Text+Image input
request_func_input.prompt = (
f"Represent the given image with the following question: "
f"{request_func_input.prompt}"
)
async def async_request_openai_embeddings_clip(
request_func_input: RequestFuncInput,
session: aiohttp.ClientSession,
pbar: tqdm | None = None,
) -> RequestFuncOutput:
_preprocess_clip(request_func_input)
return await async_request_openai_embeddings_chat(
request_func_input,
session,
pbar=pbar,
)
async def async_request_openai_embeddings_vlm2vec(
request_func_input: RequestFuncInput,
session: aiohttp.ClientSession,
pbar: tqdm | None = None,
) -> RequestFuncOutput:
_preprocess_vlm2vec(request_func_input)
return await async_request_openai_embeddings_chat(
request_func_input,
session,
pbar=pbar,
mm_position="first",
)
async def async_request_infinity_embeddings(
request_func_input: RequestFuncInput,
session: aiohttp.ClientSession,
pbar: tqdm | None = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
_validate_api_url(api_url, "Infinity Embeddings API", "embeddings")
payload = {
"model": request_func_input.model_name
if request_func_input.model_name
else request_func_input.model,
}
if request_func_input.prompt:
payload["input"] = request_func_input.prompt
else:
mm_content = request_func_input.multi_modal_content
assert isinstance(mm_content, dict)
mm_type = mm_content["type"]
payload["input"] = mm_content[mm_type]["url"]
payload["modality"] = mm_type.split("_", 1)[0]
_update_payload_common(payload, request_func_input)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
}
_update_headers_common(headers, request_func_input)
return await _run_pooling_request(
session,
api_url,
payload=payload,
headers=headers,
pbar=pbar,
)
async def async_request_infinity_embeddings_clip(
request_func_input: RequestFuncInput,
session: aiohttp.ClientSession,
pbar: tqdm | None = None,
) -> RequestFuncOutput:
_preprocess_clip(request_func_input)
return await async_request_infinity_embeddings(
request_func_input,
session,
pbar=pbar,
)
# TODO: Add more request functions for different API protocols.
ASYNC_REQUEST_FUNCS: dict[str, RequestFunc] = {
"vllm": async_request_openai_completions,
"openai": async_request_openai_completions,
"openai-chat": async_request_openai_chat_completions,
"openai-audio": async_request_openai_audio,
"openai-embeddings": async_request_openai_embeddings,
"openai-embeddings-chat": async_request_openai_embeddings_chat,
"openai-embeddings-clip": async_request_openai_embeddings_clip,
"openai-embeddings-vlm2vec": async_request_openai_embeddings_vlm2vec,
# Infinity embedding server: https://github.com/michaelfeil/infinity
"infinity-embeddings": async_request_infinity_embeddings,
"infinity-embeddings-clip": async_request_infinity_embeddings_clip,
# (Infinity embedding server does not support vlm2vec)
"vllm-rerank": async_request_vllm_rerank,
}
OPENAI_COMPATIBLE_BACKENDS = [
k
for k, v in ASYNC_REQUEST_FUNCS.items()
if v in (async_request_openai_completions, async_request_openai_chat_completions)
]