mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-12 10:36:21 +08:00
* add mixtral lora support * formatting * fix incorrectly ported logic * polish tests * minor fixes and refactoring * minor fixes * formatting * rename and remove redundant logic * refactoring * refactoring * minor fix * minor refactoring * fix code smell
239 lines
8.5 KiB
Python
239 lines
8.5 KiB
Python
import logging
|
|
from abc import ABC, abstractmethod, abstractproperty
|
|
from typing import Any, Dict, List, Optional, Set, Type
|
|
|
|
import torch
|
|
|
|
from vllm.lora.models import (LoRAModel, LoRAModelManager,
|
|
LRUCacheLoRAModelManager, create_lora_manager)
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.lora.layers import LoRAMapping
|
|
from vllm.config import LoRAConfig
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class AbstractWorkerLoRAManager(ABC):
|
|
"""Abstract class for managing LoRA models on the worker side."""
|
|
|
|
def __init__(self, max_num_seqs: int, max_num_batched_tokens: int,
|
|
vocab_size: int, lora_config: LoRAConfig,
|
|
device: torch.device):
|
|
self.max_num_seqs = max_num_seqs
|
|
self.max_num_batched_tokens = max_num_batched_tokens
|
|
self.vocab_size = vocab_size
|
|
self.device = device
|
|
self.lora_config = lora_config
|
|
|
|
@abstractproperty
|
|
def is_enabled(self) -> bool:
|
|
...
|
|
|
|
@abstractmethod
|
|
def create_lora_manager(
|
|
self,
|
|
model: torch.nn.Module,
|
|
) -> Any:
|
|
...
|
|
|
|
@abstractmethod
|
|
def set_active_loras(self, lora_requests: List[LoRARequest],
|
|
lora_mapping: LoRAMapping) -> None:
|
|
...
|
|
|
|
@abstractmethod
|
|
def add_lora(self, lora_request: LoRARequest) -> bool:
|
|
...
|
|
|
|
@abstractmethod
|
|
def add_dummy_lora(self, lora_request: LoRARequest, rank: int) -> bool:
|
|
...
|
|
|
|
@abstractmethod
|
|
def remove_lora(self, lora_id: int) -> bool:
|
|
...
|
|
|
|
@abstractmethod
|
|
def remove_all_loras(self) -> bool:
|
|
...
|
|
|
|
@abstractmethod
|
|
def list_loras(self) -> Set[int]:
|
|
...
|
|
|
|
|
|
class WorkerLoRAManager(AbstractWorkerLoRAManager):
|
|
"""WorkerLoRAManager that manages LoRA models on the worker side.
|
|
|
|
Every request, the requested LoRAs will be loaded (unless they are already
|
|
loaded), and every other LoRA will be unloaded."""
|
|
|
|
_lora_manager_cls: Type[LoRAModelManager] = LoRAModelManager
|
|
|
|
def __init__(
|
|
self,
|
|
max_num_seqs: int,
|
|
max_num_batched_tokens: int,
|
|
vocab_size: int,
|
|
lora_config: LoRAConfig,
|
|
device: torch.device,
|
|
embedding_modules: Dict[str, str],
|
|
embedding_padding_modules: List[str],
|
|
lora_model_cls: Type[LoRAModel] = LoRAModel,
|
|
):
|
|
self._lora_manager: Optional[LoRAModelManager] = None
|
|
self._lora_model_cls = lora_model_cls
|
|
self.embedding_modules = embedding_modules
|
|
self.embedding_padding_modules = embedding_padding_modules
|
|
super().__init__(max_num_seqs, max_num_batched_tokens, vocab_size,
|
|
lora_config, device)
|
|
|
|
@property
|
|
def is_enabled(self) -> bool:
|
|
return True
|
|
|
|
def create_lora_manager(
|
|
self,
|
|
model: torch.nn.Module,
|
|
) -> Any:
|
|
lora_manager = create_lora_manager(
|
|
model,
|
|
max_num_seqs=self.max_num_seqs,
|
|
max_num_batched_tokens=self.max_num_batched_tokens,
|
|
vocab_size=self.vocab_size,
|
|
lora_config=self.lora_config,
|
|
lora_manager_cls=self._lora_manager_cls,
|
|
)
|
|
self._lora_manager: LoRAModelManager = lora_manager
|
|
return lora_manager.model
|
|
|
|
def set_active_loras(self, lora_requests: List[LoRARequest],
|
|
lora_mapping: LoRAMapping) -> None:
|
|
self._apply_loras(lora_requests)
|
|
self._lora_manager.set_lora_mapping(lora_mapping)
|
|
|
|
def _apply_loras(self, lora_requests: List[LoRARequest]) -> None:
|
|
loras_that_exist = self.list_loras()
|
|
loras_map = {
|
|
lora_request.lora_int_id: lora_request
|
|
for lora_request in lora_requests if lora_request
|
|
}
|
|
if len(loras_map) > self._lora_manager.lora_slots:
|
|
raise RuntimeError(
|
|
f"Number of requested LoRAs ({len(loras_map)}) is greater "
|
|
"than the number of GPU LoRA slots "
|
|
f"({self._lora_manager.lora_slots}).")
|
|
|
|
new_loras = set(loras_map)
|
|
loras_to_add = new_loras - loras_that_exist
|
|
loras_to_remove = loras_that_exist - new_loras
|
|
|
|
for lora_id in loras_to_remove:
|
|
self.remove_lora(lora_id)
|
|
|
|
for lora_id in loras_to_add:
|
|
self.add_lora(loras_map[lora_id])
|
|
|
|
def _load_lora(self, lora_request: LoRARequest) -> LoRAModel:
|
|
try:
|
|
lora = self._lora_model_cls.from_local_checkpoint(
|
|
lora_request.lora_local_path,
|
|
lora_model_id=lora_request.lora_int_id,
|
|
device="cpu",
|
|
dtype=self.lora_config.lora_dtype,
|
|
target_embedding_padding=self.vocab_size +
|
|
self.lora_config.lora_extra_vocab_size,
|
|
embedding_modules=self.embedding_modules,
|
|
embedding_padding_modules=self.embedding_padding_modules,
|
|
)
|
|
except Exception as e:
|
|
raise RuntimeError(
|
|
f"Loading lora {lora_request.lora_local_path} failed") from e
|
|
if lora.rank > self.lora_config.max_lora_rank:
|
|
raise ValueError(
|
|
f"LoRA rank {lora.rank} is greater than max_lora_rank "
|
|
f"{self.lora_config.max_lora_rank}.")
|
|
if lora.extra_vocab_size > self.lora_config.lora_extra_vocab_size:
|
|
raise ValueError(
|
|
f"LoRA added vocab size {lora.extra_vocab_size} is greater than "
|
|
f"lora_extra_vocab_size {self.lora_config.lora_extra_vocab_size}."
|
|
)
|
|
return lora
|
|
|
|
def add_dummy_lora(self, lora_request: LoRARequest, rank: int) -> bool:
|
|
if lora_request.lora_int_id in self.list_loras():
|
|
return False
|
|
return self._lora_manager.add_lora(
|
|
self._lora_manager.create_dummy_lora(lora_request.lora_int_id,
|
|
rank, self.embedding_modules))
|
|
|
|
def add_lora(self, lora_request: LoRARequest) -> bool:
|
|
if lora_request.lora_int_id in self.list_loras():
|
|
return False
|
|
lora = self._load_lora(lora_request)
|
|
loaded = self._lora_manager.add_lora(lora)
|
|
self._lora_manager.activate_lora(lora.id)
|
|
return loaded
|
|
|
|
def remove_lora(self, lora_id: int) -> bool:
|
|
return self._lora_manager.remove_lora(lora_id)
|
|
|
|
def remove_all_loras(self) -> bool:
|
|
self._lora_manager.remove_all_loras()
|
|
|
|
def list_loras(self) -> Set[int]:
|
|
return set(self._lora_manager.list_loras())
|
|
|
|
|
|
class LRUCacheWorkerLoRAManager(WorkerLoRAManager):
|
|
"""WorkerLoRAManager that manages LoRA models on the worker side.
|
|
|
|
Uses an LRU Cache. Every request, the requested LoRAs will be loaded
|
|
(unless they are already loaded) and least recently used LoRAs will
|
|
be unloaded if the cache is above capacity."""
|
|
|
|
_lora_manager_cls: Type[
|
|
LRUCacheLoRAModelManager] = LRUCacheLoRAModelManager
|
|
|
|
def create_lora_manager(
|
|
self,
|
|
model: torch.nn.Module,
|
|
) -> Any:
|
|
lora_manager = create_lora_manager(
|
|
model,
|
|
lora_manager_cls=self._lora_manager_cls,
|
|
max_num_seqs=self.max_num_seqs,
|
|
vocab_size=self.vocab_size,
|
|
lora_config=self.lora_config,
|
|
max_num_batched_tokens=self.max_num_batched_tokens,
|
|
)
|
|
self._lora_manager: LRUCacheLoRAModelManager = lora_manager
|
|
return lora_manager.model
|
|
|
|
def _apply_loras(self, lora_requests: List[LoRARequest]) -> None:
|
|
loras_map = {
|
|
lora_request.lora_int_id: lora_request
|
|
for lora_request in lora_requests if lora_request
|
|
}
|
|
if len(loras_map) > self._lora_manager.lora_slots:
|
|
raise RuntimeError(
|
|
f"Number of requested LoRAs ({len(loras_map)}) is greater "
|
|
"than the number of GPU LoRA slots "
|
|
f"({self._lora_manager.lora_slots}).")
|
|
for lora in loras_map.values():
|
|
self.add_lora(lora)
|
|
|
|
def add_lora(self, lora_request: LoRARequest) -> bool:
|
|
if lora_request.lora_int_id not in self.list_loras():
|
|
# Remove before we load the new lora to save memory
|
|
if len(self._lora_manager) + 1 > self._lora_manager.capacity:
|
|
self._lora_manager.remove_oldest_lora()
|
|
lora = self._load_lora(lora_request)
|
|
loaded = self._lora_manager.add_lora(lora)
|
|
else:
|
|
# If the lora is already loaded, just touch it to
|
|
# update its position in the caches
|
|
loaded = self._lora_manager.get_lora(lora_request.lora_int_id)
|
|
self._lora_manager.activate_lora(lora_request.lora_int_id)
|
|
return loaded
|