vllm/vllm/v1/attention/backends/mamba2_attn.py
Chih-Chieh Yang 2b6b1d7809
[Model] Mamba2 varlen refactor (#21467)
Signed-off-by: Chih-Chieh-Yang <7364402+cyang49@users.noreply.github.com>
Co-authored-by: RishiAstra <40644327+RishiAstra@users.noreply.github.com>
2025-09-26 11:31:14 +00:00

233 lines
9.6 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import math
from dataclasses import dataclass
from typing import Optional
import torch
from vllm.attention.backends.abstract import AttentionBackend
from vllm.config import VllmConfig
from vllm.v1.attention.backends.mamba_attn import (
BaseMambaAttentionMetadataBuilder)
from vllm.v1.attention.backends.utils import (PAD_SLOT_ID,
CommonAttentionMetadata,
compute_causal_conv1d_metadata,
split_decodes_and_prefills)
from vllm.v1.kv_cache_interface import AttentionSpec
def _query_start_loc_to_chunk_indices_offsets(
query_start_loc: torch.Tensor, chunk_size: int,
total_seqlens: int) -> tuple[torch.Tensor, torch.Tensor]:
"""
Args:
query_start_loc (torch.Tensor): 1D tensor of cumulative sequence
lengths, shape (num_seqs + 1,).
The first element should be 0. Each entry represents the starting
index of a sequence in the flattened token array.
chunk_size (int): The size of each physical mamba chunk
(number of tokens per chunk).
total_seqlens (int): The total number of tokens in the batch.
Returns:
Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
- chunk_indices (torch.Tensor): 1D tensor of indices
indicating the physical chunk for each logical chunk.
- chunk_offsets (torch.Tensor): 1D tensor of offsets
indicating the starting index of each logical chunk within
its physical chunk.
This function computes the chunk indices and offsets for the given
query_start_loc and chunk_size. Both are tensors of integers with length N,
where N is the number of logical (pseudo) chunks.
A logical chunk is a sequence of tokens that are all part of the same
sequence and are all in the same physical mamba chunk.
In other words, a logical chunk changes every time we cross a sequence
boundary or a physical mamba chunk boundary.
Logical chunks are needed to handle batched requests with initial states
(see _state_passing_fwd and _chunk_scan_fwd).
The chunk_indices tensor contains the index of the physical chunk for each
logical chunk.
The chunk_offsets tensor contains the offset (AKA starting index) of the
logical chunk in the physical chunk.
Example:
query_start_loc = [0, 5, 10]
chunk_size = 8
total_seqlens = 10
-> chunk_indices = [0, 0, 1]
-> chunk_offsets = [0, 5, 0]
In this example, we have 2 sequences, each with 5 tokens. The physical
chunk size is 8 tokens.
We have three logical chunks:
- the first logical chunk starts at token 0 in the first physical chunk
and contains all 5 tokens from the first sequence
- the second logical chunk starts at token 5 in the first physical chunk
and contains first 3 tokens from the second sequence
- the third logical chunk starts at token 0 in the second physical chunk
and contains the remaining 2 tokens from the second sequence
"""
cu_seqlens = query_start_loc[1:] # remove prepended 0
# outputs will have length expansion of chunks that do not divide
# chunk_size
N = math.ceil(total_seqlens / chunk_size) + (cu_seqlens[:-1] % chunk_size
> 0).sum()
chunk_indices = torch.arange(N,
dtype=torch.int,
device=query_start_loc.device)
chunk_offsets = torch.zeros((N, ),
dtype=torch.int,
device=query_start_loc.device)
p = 0 # num of insertions
for s, e in zip(cu_seqlens[:-1], cu_seqlens[1:]):
# if does not divide chunk_size, then there is one chunk insertion
p += (s % chunk_size > 0)
# get the dimensions
# - the + 1 for _e is to shift the boundary by one chunk
# - this shifting is not needed if chunk_size divides e
_s, _e = s // chunk_size + p, e // chunk_size + p + (e % chunk_size
> 0)
# adjust indices and offsets
chunk_indices[_s:_e] -= p
chunk_offsets[_s] = s % chunk_size
return chunk_indices, chunk_offsets
class Mamba2AttentionBackend(AttentionBackend):
@staticmethod
def get_builder_cls() -> type["Mamba2AttentionMetadataBuilder"]:
return Mamba2AttentionMetadataBuilder
@dataclass
class Mamba2AttentionMetadata:
num_prefills: int
num_prefill_tokens: int
num_decodes: int
num_decode_tokens: int
query_start_loc_p: torch.Tensor
seq_lens: torch.Tensor
prep_initial_states: bool
chunk_size: int
# The following tensors only contain prefill requests and will be None if
# the batch has no prefill request.
has_initial_states_p: Optional[torch.Tensor]
seq_idx_p: Optional[torch.Tensor]
chunk_indices_p: Optional[torch.Tensor]
chunk_offsets_p: Optional[torch.Tensor]
state_indices_tensor: torch.Tensor # shape: [batch,]
# The following attributes are for triton implementation of causal_conv1d
nums_dict: Optional[dict] = None
batch_ptr: Optional[torch.Tensor] = None
token_chunk_offset_ptr: Optional[torch.Tensor] = None
class Mamba2AttentionMetadataBuilder(
BaseMambaAttentionMetadataBuilder[Mamba2AttentionMetadata]):
def __init__(self, kv_cache_spec: AttentionSpec, layer_names: list[str],
vllm_config: VllmConfig, device: torch.device):
super().__init__(kv_cache_spec, layer_names, vllm_config, device)
self.chunk_size = vllm_config.model_config.get_mamba_chunk_size()
assert self.chunk_size is not None, (
"chunk_size needs to be set in the model config for Mamba2 models")
def build(self,
common_prefix_len: int,
common_attn_metadata: CommonAttentionMetadata,
fast_build: bool = False) -> Mamba2AttentionMetadata:
num_reqs = common_attn_metadata.num_reqs
query_start_loc_p = None
seq_lens = common_attn_metadata.seq_lens
seq_idx_p = None
chunk_indices_p, chunk_offsets_p = None, None
# Need flags to indicate if there are initial states
# currently we really only support the FlashAttention backend
has_initial_states_p = None
prep_initial_states = False
# for causal_conv1d
nums_dict, batch_ptr, token_chunk_offset_ptr = None, None, None
state_indices_tensor = common_attn_metadata.block_table_tensor[:, 0]
num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens = (
split_decodes_and_prefills(
common_attn_metadata,
decode_threshold=self.reorder_batch_threshold))
# Compute seq_idx, chunk_indices and chunk_offsets for prefill only
if num_prefills > 0:
#[batch,]
has_initial_states_cpu = (
common_attn_metadata.
num_computed_tokens_cpu[num_reqs - num_prefills:num_reqs] > 0)
prep_initial_states = torch.any(has_initial_states_cpu).item()
has_initial_states_p = has_initial_states_cpu.to(
common_attn_metadata.query_start_loc.device)
query_start_loc_p = common_attn_metadata.query_start_loc[
-num_prefills - 1:] - num_decode_tokens
seq_idx_p = torch.repeat_interleave(torch.arange(
num_prefills,
dtype=torch.int32,
device=query_start_loc_p.device),
query_start_loc_p.diff(),
output_size=num_prefill_tokens)
# We compute metadata for chunked prefill once at the top level
# model forward and reuse them in mamba layers. If not needed,
# they will be ignored inside mamba kernels.
if prep_initial_states:
chunk_indices_p, chunk_offsets_p = (
_query_start_loc_to_chunk_indices_offsets(
query_start_loc_p, self.chunk_size,
num_prefill_tokens))
nums_dict, batch_ptr, token_chunk_offset_ptr = \
compute_causal_conv1d_metadata(query_start_loc_p)
elif num_decodes <= self.decode_cudagraph_max_bs:
# Pad state tensor for CUDA graph
num_input_tokens = self.vllm_config.pad_for_cudagraph(num_decodes)
self.state_indices_tensor[:num_decodes].copy_(state_indices_tensor,
non_blocking=True)
state_indices_tensor = self.state_indices_tensor[:num_input_tokens]
state_indices_tensor[num_decodes:] = PAD_SLOT_ID
attn_metadata = Mamba2AttentionMetadata(
num_prefills=num_prefills,
num_prefill_tokens=num_prefill_tokens,
num_decodes=num_decodes,
num_decode_tokens=num_decode_tokens,
query_start_loc_p=query_start_loc_p,
seq_lens=seq_lens,
prep_initial_states=prep_initial_states,
chunk_size=self.chunk_size,
has_initial_states_p=has_initial_states_p,
seq_idx_p=seq_idx_p,
chunk_indices_p=chunk_indices_p,
chunk_offsets_p=chunk_offsets_p,
state_indices_tensor=state_indices_tensor,
nums_dict=nums_dict,
batch_ptr=batch_ptr,
token_chunk_offset_ptr=token_chunk_offset_ptr,
)
return attn_metadata