mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 05:15:01 +08:00
180 lines
6.6 KiB
Python
180 lines
6.6 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from collections.abc import Iterable
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
|
|
from .utils import maybe_prefix
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
|
def __init__(self, config: VllmConfig, hidden_size: int, num_layers: int) -> None:
|
|
super().__init__()
|
|
|
|
self.layers = nn.ModuleList(
|
|
[
|
|
nn.Linear(
|
|
hidden_size,
|
|
hidden_size,
|
|
bias=getattr(config, "medusa_fc_bias", False),
|
|
)
|
|
for _ in range(num_layers)
|
|
]
|
|
)
|
|
self.act = nn.SiLU()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
for layer in self.layers:
|
|
x = x + self.act(layer(x))
|
|
return x
|
|
|
|
|
|
class Medusa(nn.Module):
|
|
"""This class implements the Medusa draft model from the paper: https://arxiv.org/abs/2401.10774
|
|
Reference implementation: https://github.com/FasterDecoding/Medusa
|
|
|
|
Differences from reference implementation:
|
|
1. Currently this only supports generating proposals from top-1 tokens.
|
|
2. We have an optional token_map which reduces draft vocab to most
|
|
frequently used tokens to give some additional speed-up by reducing
|
|
sampling overhead. This is disabled unless the checkpoint file has
|
|
explicit token_map tensor and config has an optional attribute
|
|
truncated_vocab_size < vocab_size. To use this technique, one has to find
|
|
the top-k most frequent tokens in target dataset and add that as a tensor
|
|
in the draft checkpoint (using key token_map). Also, the draft config
|
|
needs to have truncated_vocab_size (=k) as an attribute."""
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
|
|
config = vllm_config.speculative_config.draft_model_config.hf_config
|
|
super().__init__()
|
|
self.config = config
|
|
self.blocks = nn.ModuleList(
|
|
[
|
|
ResidualBlock(
|
|
config=config,
|
|
hidden_size=self.config.hidden_size,
|
|
num_layers=self.config.num_hidden_layers,
|
|
)
|
|
for _ in range(self.config.num_heads)
|
|
]
|
|
)
|
|
self.orig_vocab_size = config.vocab_size
|
|
self.truncated_vocab_size = config.truncated_vocab_size
|
|
|
|
if getattr(config, "original_lm_head", False):
|
|
self.lm_head = ParallelLMHead(
|
|
self.truncated_vocab_size,
|
|
config.hidden_size,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
self.lm_heads = [self.lm_head for _ in range(self.config.num_heads)]
|
|
else:
|
|
self.lm_heads = nn.ModuleList(
|
|
[
|
|
ParallelLMHead(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
prefix=maybe_prefix(prefix, f"lm_heads.{i}"),
|
|
)
|
|
for i in range(self.config.num_heads)
|
|
]
|
|
)
|
|
|
|
logit_scale = getattr(config, "logit_scale", 1.0)
|
|
self.logits_processor = LogitsProcessor(
|
|
config.vocab_size, self.truncated_vocab_size, logit_scale
|
|
)
|
|
|
|
# Token map is a idx to token mapping to reduce the vocab size for
|
|
# the draft model. Using smaller vocab size for draft, containing
|
|
# only most frequent tokens reduces the speculation overhead. This
|
|
# doesn't affect the acceptance rate much and thus gives more speed
|
|
# -up. By default, this is disabled and is only used if the EAGLE
|
|
# checkpoint file has token_map tensor.
|
|
self.token_map = None
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> list[torch.Tensor]:
|
|
return [block(hidden_states) for block in self.blocks]
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: list[torch.Tensor],
|
|
) -> list[torch.Tensor]:
|
|
logits_lst: list[torch.Tensor] = []
|
|
|
|
for hs, lm_head in zip(hidden_states, self.lm_heads):
|
|
_logits = self.logits_processor(lm_head, hs)
|
|
|
|
if _logits is None:
|
|
# _logits should only be None on rank > 0, in which case
|
|
# it should remain true for every lm_head
|
|
assert len(logits_lst) == 0
|
|
continue
|
|
|
|
if self.token_map is None:
|
|
logits_lst.append(_logits)
|
|
else:
|
|
logits_lst.append(
|
|
-torch.inf
|
|
* torch.ones(
|
|
size=(*_logits.shape[:-1], self.orig_vocab_size),
|
|
device=_logits.device,
|
|
dtype=_logits.dtype,
|
|
)
|
|
)
|
|
|
|
logits_lst[-1][..., self.token_map] = _logits
|
|
|
|
return logits_lst
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
|
|
weights_map = {}
|
|
|
|
for name, loaded_weight in weights:
|
|
name = name.replace("medusa_heads.", "")
|
|
|
|
if name == "token_map":
|
|
if self.truncated_vocab_size < self.orig_vocab_size:
|
|
self.token_map = nn.Parameter(loaded_weight, requires_grad=False)
|
|
elif name in params_dict:
|
|
weights_map[name] = loaded_weight
|
|
elif (
|
|
getattr(self.config, "original_lm_head", False)
|
|
and name == "lm_heads.0.weight"
|
|
):
|
|
weights_map["lm_head.weight"] = loaded_weight
|
|
|
|
for name, loaded_weight in weights_map.items():
|
|
if (
|
|
"lm_head" in name
|
|
and self.token_map is not None
|
|
and loaded_weight.shape[0] > self.token_map.shape[0]
|
|
):
|
|
loaded_weight = loaded_weight[self.token_map]
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
|
|
if self.token_map is not None:
|
|
self.token_map.to(device=self.lm_heads[0].weight.device)
|
|
|
|
assert (self.truncated_vocab_size == self.orig_vocab_size) or (
|
|
self.token_map is not None
|
|
)
|
|
|
|
return loaded_params
|