mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 01:25:02 +08:00
387 lines
14 KiB
Python
387 lines
14 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Adapted from
|
|
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only EagleMiniCPM model compatible with HuggingFace weights."""
|
|
|
|
import math
|
|
from collections.abc import Iterable
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import PretrainedConfig
|
|
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, VllmConfig
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import SupportsEagle, SupportsLoRA, SupportsPP
|
|
from .minicpm import MiniCPMAttention as EagleMiniCPMAttention
|
|
from .minicpm import MiniCPMMLP as EagleMiniCPMMLP
|
|
from .minicpm import MiniCPMMoE as EagleMiniCPMMoE
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory,
|
|
maybe_prefix,
|
|
process_eagle_weight,
|
|
)
|
|
|
|
|
|
class EagleMiniCPMDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.config = config
|
|
self.cache_config = cache_config
|
|
self.quant_config = quant_config
|
|
self.hidden_size = config.hidden_size
|
|
self.max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
|
|
self.prefix = prefix
|
|
self._init_attn_block()
|
|
self._init_ffn_block()
|
|
|
|
def _init_attn_block(self):
|
|
self.input_layernorm = RMSNorm(
|
|
self.config.hidden_size, eps=self.config.rms_norm_eps
|
|
)
|
|
self.self_attn = EagleMiniCPMAttention(
|
|
hidden_size=self.hidden_size,
|
|
num_heads=self.config.num_attention_heads,
|
|
num_kv_heads=self.config.num_key_value_heads,
|
|
rope_parameters=self.config.rope_parameters,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
cache_config=self.cache_config,
|
|
quant_config=self.quant_config,
|
|
prefix=f"{self.prefix}.self_attn",
|
|
)
|
|
|
|
def _init_ffn_block(self):
|
|
self.post_attention_layernorm = RMSNorm(
|
|
self.config.hidden_size, eps=self.config.rms_norm_eps
|
|
)
|
|
self.num_experts = getattr(self.config, "num_experts", 0)
|
|
if self.num_experts == 0:
|
|
self.mlp = EagleMiniCPMMLP(
|
|
hidden_size=self.hidden_size,
|
|
intermediate_size=self.config.intermediate_size,
|
|
hidden_act=self.config.hidden_act,
|
|
hidden_act_param=getattr(self.config, "hidden_act_param", 0.0),
|
|
quant_config=self.quant_config,
|
|
)
|
|
else:
|
|
self.mlp = EagleMiniCPMMoE(
|
|
num_experts=self.config.num_experts,
|
|
top_k=self.config.num_experts_per_tok,
|
|
hidden_size=self.config.hidden_size,
|
|
intermediate_size=self.config.intermediate_size,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
# Self Attention
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
hidden_states = self.self_attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
)
|
|
hidden_states = residual + hidden_states * (
|
|
self.config.scale_depth / math.sqrt(self.config.mup_denominator)
|
|
)
|
|
|
|
# Fully Connected
|
|
residual = hidden_states
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + hidden_states * (
|
|
self.config.scale_depth / math.sqrt(self.config.mup_denominator)
|
|
)
|
|
|
|
return hidden_states, None
|
|
|
|
|
|
@support_torch_compile
|
|
class EagleMiniCPMModel(nn.Module):
|
|
def __init__(
|
|
self, *, vllm_config: VllmConfig, prefix: str = "", start_layer: int = 0
|
|
):
|
|
super().__init__()
|
|
|
|
config = vllm_config.speculative_config.draft_model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.config = config
|
|
self.cache_config = cache_config
|
|
self.quant_config = quant_config
|
|
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.fc = torch.nn.Linear(
|
|
self.config.hidden_size * 2, self.config.hidden_size, bias=False
|
|
)
|
|
self.input_norm1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.input_norm2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
self.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
self.num_experts = getattr(self.config, "num_experts", 0)
|
|
self._init_layers(prefix, config, cache_config, quant_config, start_layer)
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
|
|
["hidden_states", "residual"], self.config.hidden_size
|
|
)
|
|
|
|
def _init_layers(
|
|
self,
|
|
prefix: str,
|
|
config: PretrainedConfig,
|
|
cache_config: CacheConfig | None,
|
|
quant_config: QuantizationConfig | None,
|
|
start_layer: int,
|
|
):
|
|
self.eagle_layers = nn.ModuleList(
|
|
[
|
|
EagleMiniCPMDecoderLayer(
|
|
config,
|
|
cache_config,
|
|
quant_config,
|
|
f"{prefix}.eagle_layers.{i + start_layer}",
|
|
)
|
|
for i in range(self.config.num_hidden_layers)
|
|
]
|
|
)
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
embedding = self.embed_tokens(input_ids)
|
|
return embedding * self.config.scale_emb
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
input_embeds = self.embed_input_ids(input_ids)
|
|
input_embeds = self.input_norm1(input_embeds)
|
|
hidden_states = self.input_norm2(hidden_states)
|
|
|
|
hidden_states = self.fc(torch.cat((input_embeds, hidden_states), dim=-1))
|
|
residual = None
|
|
for layer in self.eagle_layers:
|
|
hidden_states, residual = layer(
|
|
positions,
|
|
hidden_states,
|
|
residual,
|
|
)
|
|
|
|
return hidden_states, hidden_states
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
]
|
|
expert_params_mapping = [
|
|
# (param_name, weight_name, expert_id)
|
|
(
|
|
"ws" if weight_name in ["w1", "w3"] else "w2s",
|
|
f"experts.{expert_id}.{weight_name}.weight",
|
|
expert_id,
|
|
)
|
|
for expert_id in range(self.num_experts)
|
|
for weight_name in ["w1", "w2", "w3"]
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
|
|
# Models trained using ColossalAI may include these tensors in
|
|
# the checkpoint. Skip them.
|
|
continue
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
for param_name, weight_name, expert_id in expert_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(
|
|
param, loaded_weight, weight_name, expert_id=expert_id
|
|
)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(
|
|
param, "weight_loader", default_weight_loader
|
|
)
|
|
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class EagleMiniCPMForCausalLM(nn.Module, SupportsLoRA, SupportsPP, SupportsEagle):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
],
|
|
"gate_up_proj": [
|
|
"gate_proj",
|
|
"up_proj",
|
|
],
|
|
}
|
|
|
|
# LoRA specific attributes
|
|
embedding_modules = {
|
|
"embed_tokens": "input_embeddings",
|
|
"lm_head": "output_embeddings",
|
|
}
|
|
embedding_padding_modules = ["lm_head"]
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.speculative_config.draft_model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.prefix = prefix
|
|
self.vllm_config = vllm_config
|
|
self.config = config
|
|
|
|
self.cache_config = cache_config
|
|
self.quant_config = quant_config
|
|
|
|
target_layer_num = vllm_config.model_config.get_num_layers(
|
|
vllm_config.parallel_config
|
|
)
|
|
|
|
self.model = self._init_model(
|
|
vllm_config=vllm_config,
|
|
prefix=maybe_prefix(prefix, "model"),
|
|
start_layer=target_layer_num,
|
|
)
|
|
|
|
self.lm_head = ParallelLMHead(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
if config.tie_word_embeddings:
|
|
self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
|
|
self.scale_width = self.config.hidden_size / self.config.dim_model_base
|
|
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
def _init_model(
|
|
self, *, vllm_config: VllmConfig, prefix: str = "", start_layer: int = 0
|
|
):
|
|
return EagleMiniCPMModel(
|
|
vllm_config=vllm_config, prefix=prefix, start_layer=start_layer
|
|
)
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.embed_input_ids(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
hidden_states, hidden_states2 = self.model(input_ids, positions, hidden_states)
|
|
hidden_states = hidden_states / self.scale_width
|
|
hidden_states2 = hidden_states2 / self.scale_width
|
|
return hidden_states, hidden_states2
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
logits = self.logits_processor(self.lm_head, hidden_states)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
def transform(inputs):
|
|
name, loaded_weight = inputs
|
|
process_eagle_weight(self, name)
|
|
return name, loaded_weight
|
|
|
|
loader = AutoWeightsLoader(
|
|
self,
|
|
skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
|
|
)
|
|
return loader.load_weights(map(transform, weights))
|