mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 23:34:27 +08:00
236 lines
8.3 KiB
Python
236 lines
8.3 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import math
|
|
from collections.abc import Iterable
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
|
|
from .utils import maybe_prefix
|
|
|
|
SQRT2 = 2**0.5
|
|
|
|
|
|
class MLPSpeculatorLayerNorm(nn.Module):
|
|
"""
|
|
A L2 normalization implementation
|
|
...
|
|
Args
|
|
----
|
|
normalized_shape : int
|
|
Dimensionality of input data (size of final tensor axis)
|
|
eps : float
|
|
Safety term to prevent division by zero. Make sure the chosen value
|
|
fits in the range of your encoding scheme
|
|
(i.e. fp16 requires eps >= 6e-8).
|
|
elementwise_scale_and_shift : bool
|
|
Include a learned scaling and shift term after normalization.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
normalized_shape,
|
|
eps=1e-06,
|
|
elementwise_scale_and_shift=True,
|
|
):
|
|
super().__init__()
|
|
self.elementwise_scale_and_shift = elementwise_scale_and_shift
|
|
if self.elementwise_scale_and_shift:
|
|
self.weight = nn.Parameter(torch.empty(normalized_shape))
|
|
self.bias = nn.Parameter(torch.empty(normalized_shape))
|
|
self.eps = eps
|
|
|
|
def forward(self, x):
|
|
xf = x
|
|
xf = xf * torch.rsqrt(xf.pow(2).mean(-1, keepdim=True) + self.eps)
|
|
x = xf.type_as(x)
|
|
if self.elementwise_scale_and_shift:
|
|
x = self.weight * x
|
|
x = x + self.bias
|
|
return x
|
|
|
|
|
|
class MLPSpeculator(nn.Module):
|
|
"""
|
|
An implementation of the speculative models introduced in
|
|
"Accelerating Production LLMs with Combined Token/Embedding
|
|
Speculators"
|
|
https://arxiv.org/pdf/2404.19124
|
|
|
|
Trained speculators of this type are available on HF hub at:
|
|
https://huggingface.co/ibm-ai-platform and https://huggingface.co/ibm-granite
|
|
"""
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
self.n_predict = config.n_predict
|
|
self.vocab_size = config.vocab_size
|
|
self.emb_dim = config.emb_dim
|
|
self.inner_dim = config.inner_dim if config.inner_dim != 0 else config.emb_dim
|
|
|
|
self.max_speculative_tokens = config.num_lookahead_tokens
|
|
|
|
self.tie_weights = config.tie_weights
|
|
self.scale_input = config.scale_input
|
|
|
|
if self.tie_weights:
|
|
assert self.n_predict > 1, (
|
|
"You cannot tie weights between stages when only 1 exists"
|
|
)
|
|
embedding = VocabParallelEmbedding(
|
|
config.vocab_size, self.inner_dim, org_num_embeddings=config.vocab_size
|
|
)
|
|
self.emb = nn.ModuleList([embedding] * self.max_speculative_tokens)
|
|
|
|
# the initial projection from the base model may
|
|
# have a different size, so that stays separate.
|
|
proj_first = nn.Linear(self.emb_dim, self.inner_dim, bias=False)
|
|
proj_tied = nn.Linear(self.inner_dim, self.inner_dim, bias=False)
|
|
self.proj = nn.ModuleList(
|
|
[proj_first] + [proj_tied] * (self.max_speculative_tokens - 1)
|
|
)
|
|
|
|
self.head = nn.ModuleList(
|
|
[
|
|
ParallelLMHead(
|
|
self.vocab_size,
|
|
self.inner_dim,
|
|
bias=False,
|
|
prefix=maybe_prefix(prefix, f"head.{i}"),
|
|
)
|
|
for i in range(self.max_speculative_tokens)
|
|
]
|
|
)
|
|
|
|
ln = MLPSpeculatorLayerNorm(
|
|
self.inner_dim, elementwise_scale_and_shift=True
|
|
)
|
|
self.ln = nn.ModuleList([ln] * self.max_speculative_tokens)
|
|
|
|
else:
|
|
self.emb = nn.ModuleList(
|
|
[
|
|
VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
self.inner_dim,
|
|
)
|
|
for _ in range(self.max_speculative_tokens)
|
|
]
|
|
)
|
|
|
|
self.proj = nn.ModuleList(
|
|
[
|
|
nn.Linear(
|
|
(self.emb_dim if i == 0 else self.inner_dim),
|
|
self.inner_dim,
|
|
bias=False,
|
|
)
|
|
for i in range(self.max_speculative_tokens)
|
|
]
|
|
)
|
|
|
|
self.head = nn.ModuleList(
|
|
[
|
|
ParallelLMHead(
|
|
self.vocab_size,
|
|
self.inner_dim,
|
|
bias=False,
|
|
prefix=maybe_prefix(prefix, f"head.{i}"),
|
|
)
|
|
for i in range(self.max_speculative_tokens)
|
|
]
|
|
)
|
|
self.ln = nn.ModuleList(
|
|
[
|
|
MLPSpeculatorLayerNorm(
|
|
self.inner_dim, elementwise_scale_and_shift=True
|
|
)
|
|
for _ in range(self.max_speculative_tokens)
|
|
]
|
|
)
|
|
if self.scale_input:
|
|
self.ln0 = MLPSpeculatorLayerNorm(
|
|
self.emb_dim, elementwise_scale_and_shift=False
|
|
)
|
|
|
|
self.state_weight = 0.5 ** (0.5 / config.n_predict)
|
|
self.emb_weight = math.sqrt((1 - self.state_weight**2) * (self.inner_dim / 2))
|
|
self.activation = nn.GELU()
|
|
self.config = config
|
|
self.logits_processor = LogitsProcessor(
|
|
config.vocab_size, config.vocab_size, 1.0
|
|
)
|
|
|
|
# NOTE(woosuk): This method is commented out because it is old code
|
|
# using V0. We should either port it to V1 or remove it.
|
|
|
|
# def generate_proposals(
|
|
# self,
|
|
# input_ids: torch.Tensor,
|
|
# previous_hidden_states: torch.Tensor,
|
|
# num_predict_tokens: int,
|
|
# sampling_metadata: SamplingMetadata,
|
|
# ) -> list[SamplerOutput]:
|
|
# if num_predict_tokens > self.max_speculative_tokens:
|
|
# raise ValueError(f"Max speculative tokens for model is "
|
|
# f"{self.max_speculative_tokens}, but "
|
|
# f"{num_predict_tokens} were requested")
|
|
|
|
# # b x 1 x d
|
|
# previous_hidden_states = previous_hidden_states.unsqueeze(1)
|
|
|
|
# if self.scale_input:
|
|
# previous_hidden_states = self.ln0(previous_hidden_states) / SQRT2
|
|
|
|
# # b x 1
|
|
# last_tokens = input_ids.unsqueeze(1)
|
|
|
|
# next_tokens = []
|
|
|
|
# for head_index in range(num_predict_tokens):
|
|
|
|
# # Project and predict
|
|
# z = self.emb[head_index](last_tokens) # b k d
|
|
# states = self.proj[head_index](previous_hidden_states)
|
|
|
|
# # Weighted add of state_weight*state and emb_weight*z
|
|
# # Let subsequent LN take care of denominator
|
|
# # state_weight is close to 1, so shouldn't be any precision issues
|
|
# states.add_(z, alpha=self.emb_weight / self.state_weight)
|
|
|
|
# states = self.activation(self.ln[head_index](states)) # b k d
|
|
# previous_hidden_states = states
|
|
# # TODO: not yet supporting top_k_tokens_per_head
|
|
# states = states.flatten(0, 1)
|
|
|
|
# logits = self.logits_processor(self.head[head_index], states,
|
|
# sampling_metadata)
|
|
|
|
# output = self.sampler(logits, sampling_metadata)
|
|
# last_tokens = output.sampled_token_ids
|
|
# next_tokens.append(output)
|
|
|
|
# return next_tokens
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
name = name.replace("speculator.", "")
|
|
param = params_dict.get(name)
|
|
if param is not None:
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|