vllm/vllm/model_executor/models/siglip2navit.py
Isotr0py e4bb2684bc
[Models] Replace all nn.Conv2d with vLLM's Conv2dLayer (#28842)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-11-18 18:56:04 +00:00

726 lines
26 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Implementation of SiglipVisionModel intended to be only used
within a vision language model."""
from collections.abc import Iterable
import torch
from einops import rearrange, repeat
from torch import nn
from torch.nn import functional as F
from transformers import Siglip2VisionConfig
from transformers.configuration_utils import PretrainedConfig
from vllm.attention.backends.registry import AttentionBackendEnum
from vllm.attention.layer import maybe_get_vit_flash_attn_backend
from vllm.distributed import divide, get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.conv import Conv2dLayer
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
LinearBase,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.platforms import current_platform
from .vision import get_vit_attn_backend
class VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0) -> None:
super().__init__()
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, seqlen: int) -> torch.Tensor:
seq = torch.arange(
seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype
)
freqs = torch.outer(seq, self.inv_freq)
return freqs
class Siglip2VisionEmbeddings(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.patch_size = config.patch_size
self.image_size = config.image_size
self.num_patches = config.num_patches
self.preserve_original_pe = config.preserve_original_pe
self.hidden_stride = config.hidden_stride
# siglip2 naflex
if self.num_patches > 0:
self.patch_embedding = ReplicatedLinear(
input_size=config.num_channels * self.patch_size * self.patch_size,
output_size=self.embed_dim,
return_bias=False,
)
if self.preserve_original_pe:
self.position_embedding_size = int(self.num_patches**0.5)
self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim)
else:
self.patch_embedding = Conv2dLayer(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
if self.preserve_original_pe:
self.num_patches = (self.image_size // self.patch_size) ** 2
self.position_embedding_size = self.image_size // self.patch_size
self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim)
def forward(
self,
pixel_values: torch.FloatTensor,
grid_thws: torch.LongTensor | None = None,
) -> torch.Tensor:
"""
Args:
pixel_values (`torch.FloatTensor`):
Pixel values of shape (
num_patches,
num_channels * temporal_patch_size * patch_size * patch_size
)
grid_thws: (`torch.LongTensor`):
grid shape (num_patches, 3)
"""
# Apply patch embeddings to already patchified pixel values
target_dtype = self.patch_embedding.weight.dtype
if isinstance(self.patch_embedding, LinearBase):
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))
elif isinstance(self.patch_embedding, Conv2dLayer):
pixel_values = pixel_values.view(
-1,
self.config.num_channels * self.config.temporal_patch_size,
self.patch_size,
self.patch_size,
)
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))
patch_embeds = patch_embeds.reshape(-1, self.embed_dim)
if self.preserve_original_pe:
assert grid_thws is not None
pos_embed_new = torch.zeros_like(patch_embeds)
positional_embeddings = (
self.position_embedding.weight.reshape(
self.position_embedding_size, self.position_embedding_size, -1
)
.unsqueeze(0)
.permute(0, 3, 1, 2)
)
cnt = 0
for t, h, w in grid_thws:
volume = t * h * w
pe = F.interpolate(
positional_embeddings,
size=(h, w),
mode="bicubic",
align_corners=False,
)
pe = pe.permute(0, 2, 3, 1).reshape(1, h * w, -1)
pe = pe[0].repeat(t, 1)
pe = pe.reshape(
t,
h // self.hidden_stride,
self.hidden_stride,
w // self.hidden_stride,
self.hidden_stride,
-1,
)
pe = pe.permute(0, 1, 3, 2, 4, 5).reshape(volume, -1)
pos_embed_new[cnt : cnt + volume] = pe
cnt += volume
patch_embeds = patch_embeds + pos_embed_new
return patch_embeds
# copy from flash_attn/layers/rotary.py
def rotate_half(x, interleaved=False):
if not interleaved:
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
else:
x1, x2 = x[..., ::2], x[..., 1::2]
return rearrange(
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
)
def apply_rotary_emb_torch(x, cos, sin, interleaved=False):
"""
x: (batch_size, seqlen, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
"""
ro_dim = cos.shape[-1] * 2
assert ro_dim <= x.shape[-1]
cos = repeat(
cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
)
sin = repeat(
sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
)
return torch.cat(
[
x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin,
x[..., ro_dim:],
],
dim=-1,
)
def apply_rotary_pos_emb(
q: torch.Tensor,
k: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
is_flash_attn_backend: bool = False,
) -> tuple[torch.Tensor, torch.Tensor]:
cos = cos.chunk(2, dim=-1)[0].contiguous()
sin = sin.chunk(2, dim=-1)[0].contiguous()
if is_flash_attn_backend and not current_platform.is_xpu():
from flash_attn.layers.rotary import apply_rotary_emb
apply_rotary_emb_func = apply_rotary_emb
else:
apply_rotary_emb_func = apply_rotary_emb_torch
q_embed = apply_rotary_emb_func(q.float(), cos.float(), sin.float()).type_as(q)
k_embed = apply_rotary_emb_func(k.float(), cos.float(), sin.float()).type_as(k)
return q_embed, k_embed
class Siglip2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
config: Siglip2VisionConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
attn_backend_override: AttentionBackendEnum | None = None,
):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads "
f"(got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.is_causal = False
# TODO(Isotr0py): Enable data parallel after we support
# disabling TP on parallel linear layer
self.qkv_proj = QKVParallelLinear(
hidden_size=self.embed_dim,
head_size=self.head_dim,
total_num_heads=self.num_heads,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.out_proj = RowParallelLinear(
input_size=self.embed_dim,
output_size=self.embed_dim,
quant_config=quant_config,
prefix=f"{prefix}.out_proj",
)
self.tp_size = (
1 if use_data_parallel else get_tensor_model_parallel_world_size()
)
self.num_heads_per_partition = divide(self.num_heads, self.tp_size)
self.use_rope = config.use_rope
# Detect attention implementation.
self.attn_backend = get_vit_attn_backend(
head_size=self.head_dim,
dtype=torch.get_default_dtype(),
attn_backend_override=attn_backend_override,
)
self.use_upstream_fa = False
self.attn_backend, self.flash_attn_varlen_func = (
maybe_get_vit_flash_attn_backend(
self.attn_backend,
self.use_upstream_fa,
attn_backend_override=attn_backend_override,
)
)
if self.attn_backend not in {
AttentionBackendEnum.FLASH_ATTN,
AttentionBackendEnum.TORCH_SDPA,
AttentionBackendEnum.ROCM_AITER_FA,
}:
self.attn_backend = AttentionBackendEnum.TORCH_SDPA
self.is_flash_attn_backend = self.attn_backend in {
AttentionBackendEnum.FLASH_ATTN,
AttentionBackendEnum.ROCM_AITER_FA,
}
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor] | None = None,
) -> tuple[torch.Tensor, torch.Tensor | None]:
"""Input shape: Batch x Time x Channel"""
seq_length, embed_dim = hidden_states.shape
qkv_states, _ = self.qkv_proj(hidden_states)
queries, keys, values = qkv_states.chunk(3, dim=-1)
queries = queries.view(seq_length, self.num_heads_per_partition, self.head_dim)
keys = keys.view(seq_length, self.num_heads_per_partition, self.head_dim)
values = values.view(seq_length, self.num_heads_per_partition, self.head_dim)
if self.use_rope:
cos, sin = position_embeddings
queries, keys = apply_rotary_pos_emb(
queries.unsqueeze(0),
keys.unsqueeze(0),
cos,
sin,
self.is_flash_attn_backend,
)
queries = queries.squeeze(0)
keys = keys.squeeze(0)
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
if self.is_flash_attn_backend:
attn_output = self.flash_attn_varlen_func(
queries,
keys,
values,
cu_seqlens_q=cu_seqlens,
cu_seqlens_k=cu_seqlens,
max_seqlen_q=max_seqlen,
max_seqlen_k=max_seqlen,
).reshape(seq_length, -1)
elif self.attn_backend == AttentionBackendEnum.TORCH_SDPA:
# Execute attention entry by entry for speed & less VRAM.
batch_size = cu_seqlens.shape[0] - 1
outputs = []
cu = cu_seqlens.tolist()
for i in range(batch_size):
start_idx = cu[i]
end_idx = cu[i + 1]
# Each sequence is processed independently.
q_i = queries[start_idx:end_idx].unsqueeze(0)
k_i = keys[start_idx:end_idx].unsqueeze(0)
v_i = values[start_idx:end_idx].unsqueeze(0)
# (1, seq_len, num_heads, head_dim) ->
# (1, num_heads, seq_len, head_dim)
q_i, k_i, v_i = [x.transpose(1, 2) for x in (q_i, k_i, v_i)]
output_i = F.scaled_dot_product_attention(q_i, k_i, v_i, dropout_p=0.0)
# (1, num_heads, seq_len, head_dim) -> (seq_len, embed_dim)
output_i = output_i.transpose(1, 2).reshape(end_idx - start_idx, -1)
outputs.append(output_i)
attn_output = torch.cat(outputs, dim=0)
attn_output, _ = self.out_proj(attn_output)
return attn_output
class Siglip2MLP(nn.Module):
def __init__(
self,
config: Siglip2VisionConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
):
super().__init__()
self.config = config
self.activation_fn = get_act_fn(config.hidden_act)
# TODO(Isotr0py): Enable data parallel after we support
# disabling TP on parallel linear layer
self.fc1 = ColumnParallelLinear(
config.hidden_size,
config.intermediate_size,
quant_config=quant_config,
prefix=f"{prefix}.fc1",
)
self.fc2 = RowParallelLinear(
config.intermediate_size,
config.hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.fc2",
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states, _ = self.fc2(hidden_states)
return hidden_states
class Siglip2EncoderLayer(nn.Module):
def __init__(
self,
config: Siglip2VisionConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
attn_backend_override: AttentionBackendEnum | None = None,
):
super().__init__()
self.embed_dim = config.hidden_size
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.self_attn = Siglip2Attention(
config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
use_data_parallel=use_data_parallel,
attn_backend_override=attn_backend_override,
)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = Siglip2MLP(
config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
use_data_parallel=use_data_parallel,
)
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
position_embeddings: torch.Tensor,
) -> tuple[torch.FloatTensor]:
"""
Args:
hidden_states: Input tensor of shape (batch, seq_len, embed_dim).
cu_seqlens: Cumulative sequence lengths tensor.
position_embeddings: Position embeddings tensor.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states = self.self_attn(
hidden_states=hidden_states,
cu_seqlens=cu_seqlens,
position_embeddings=position_embeddings,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Siglip2Encoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers`
self attention layers. Each layer is a [`Siglip2EncoderLayer`].
Args:
config: PretrainedConfig
"""
def __init__(
self,
config: Siglip2VisionConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
attn_backend_override: AttentionBackendEnum | None = None,
):
super().__init__()
self.config = config
self.layers = nn.ModuleList(
[
Siglip2EncoderLayer(
config,
quant_config=quant_config,
prefix=f"{prefix}.layers.{idx}",
use_data_parallel=use_data_parallel,
attn_backend_override=attn_backend_override,
)
for idx in range(config.num_hidden_layers)
]
)
self.rotary_pos_emb = VisionRotaryEmbedding(
config.hidden_size // config.num_attention_heads // 2
)
self.patch_size = config.patch_size
self.hidden_stride = config.hidden_stride
self.window_size = config.window_size
self.spatial_merge_unit = config.hidden_stride * config.hidden_stride
if config.fullatt_block_indexes is None:
self.fullatt_block_indexes = None
else:
self.fullatt_block_indexes = [
int(i) for i in config.fullatt_block_indexes.split("|")
]
# copied from qwen2.5_vl
def rot_pos_emb(self, grid_thw):
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // self.hidden_stride,
self.hidden_stride,
w // self.hidden_stride,
self.hidden_stride,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
hpos_ids = hpos_ids.flatten()
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.hidden_stride,
self.hidden_stride,
w // self.hidden_stride,
self.hidden_stride,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
wpos_ids = wpos_ids.flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
def get_window_index(self, grid_thw):
window_index: list = []
cu_window_seqlens: list = [0]
window_index_id = 0
# patch (after merge) number in each window
vit_merger_window_size = (
self.window_size // self.hidden_stride // self.patch_size
)
for grid_t, grid_h, grid_w in grid_thw:
llm_grid_h, llm_grid_w = (
grid_h // self.hidden_stride, # number of patch after merge
grid_w // self.hidden_stride,
)
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(
grid_t, llm_grid_h, llm_grid_w
)
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
index_padded = index_padded.reshape(
grid_t,
num_windows_h,
vit_merger_window_size,
num_windows_w,
vit_merger_window_size,
)
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
grid_t,
num_windows_h * num_windows_w,
vit_merger_window_size,
vit_merger_window_size,
)
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
index_padded = index_padded.reshape(-1)
index_new = index_padded[index_padded != -100]
window_index.append(index_new + window_index_id)
cu_seqlens_tmp = (
seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1]
)
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
window_index = torch.cat(window_index, dim=0)
return window_index, cu_window_seqlens
def forward(
self,
inputs_embeds: torch.Tensor,
grid_thws: torch.Tensor,
) -> torch.Tensor:
r"""
Args:
inputs_embeds: Input tensor of shape
(batch_size, sequence_length, hidden_size).
Embedded representation of the input tokens.
grid_thws: Grid tensor of shape (num_patches, 3)
containing grid dimensions.
Whether or not to return a [`~utils.ModelOutput`] instead of
a plain tuple.
"""
rotary_pos_emb = self.rot_pos_emb(grid_thws)
window_index, cu_window_seqlens = self.get_window_index(grid_thws)
cu_window_seqlens = torch.tensor(
cu_window_seqlens,
device=inputs_embeds.device,
dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
seq_len, _ = inputs_embeds.size()
inputs_embeds = inputs_embeds.reshape(
seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1
)
inputs_embeds = inputs_embeds[window_index, :, :]
inputs_embeds = inputs_embeds.reshape(seq_len, -1)
rotary_pos_emb = rotary_pos_emb.reshape(
seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1
)
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
position_embeddings = (emb.cos(), emb.sin())
cu_seqlens = torch.repeat_interleave(
grid_thws[:, 1] * grid_thws[:, 2], grid_thws[:, 0]
).cumsum(
dim=0,
# Select dtype based on the following factors:
# - FA2 requires that cu_seqlens_q must have dtype int32
# - torch.onnx.export requires that cu_seqlens_q must have
# same dtype as grid_thw
# See https://github.com/huggingface/transformers/pull/34852
# for more information
dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_seqlens = torch.cat([cu_seqlens.new_zeros(1), cu_seqlens])
reverse_indices = torch.argsort(window_index)
hidden_states = inputs_embeds
for index, block in enumerate(self.layers):
if not self.fullatt_block_indexes or index in self.fullatt_block_indexes:
cu_seqlens_tmp = cu_seqlens
else:
cu_seqlens_tmp = cu_window_seqlens
hidden_states = block(hidden_states, cu_seqlens_tmp, position_embeddings)
hidden_states = hidden_states.reshape(
seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1
)
hidden_states = hidden_states[reverse_indices, :].reshape(seq_len, -1)
return hidden_states
class Siglip2VisionTransformer(nn.Module):
def __init__(
self,
config: Siglip2VisionConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
attn_backend_override: AttentionBackendEnum | None = None,
):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = Siglip2VisionEmbeddings(config)
self.encoder = Siglip2Encoder(
config,
quant_config=quant_config,
prefix=f"{prefix}.encoder",
use_data_parallel=use_data_parallel,
attn_backend_override=attn_backend_override,
)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
def forward(
self,
pixel_values: torch.FloatTensor,
grid_thws: torch.LongTensor,
) -> torch.Tensor:
r"""
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
Tensor containing the spatial dimensions (height, width)
of the input images.
"""
hidden_states = self.embeddings(pixel_values, grid_thws)
last_hidden_state = self.encoder(hidden_states, grid_thws)
last_hidden_state = self.post_layernorm(last_hidden_state)
return last_hidden_state
class Siglip2NavitModel(torch.nn.Module):
def __init__(
self,
config: Siglip2VisionConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
use_data_parallel: bool = False,
attn_backend_override: AttentionBackendEnum | None = None,
):
super().__init__()
self.vision_model = Siglip2VisionTransformer(
config,
quant_config=quant_config,
prefix=f"{prefix}.vision_model",
use_data_parallel=use_data_parallel,
attn_backend_override=attn_backend_override,
)
def forward(
self,
pixel_values: torch.FloatTensor,
grid_thws: torch.LongTensor,
) -> torch.Tensor:
return self.vision_model(
pixel_values=pixel_values,
grid_thws=grid_thws,
)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params