mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 00:46:48 +08:00
726 lines
26 KiB
Python
726 lines
26 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Implementation of SiglipVisionModel intended to be only used
|
|
within a vision language model."""
|
|
|
|
from collections.abc import Iterable
|
|
|
|
import torch
|
|
from einops import rearrange, repeat
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
from transformers import Siglip2VisionConfig
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
|
|
from vllm.attention.backends.registry import AttentionBackendEnum
|
|
from vllm.attention.layer import maybe_get_vit_flash_attn_backend
|
|
from vllm.distributed import divide, get_tensor_model_parallel_world_size
|
|
from vllm.model_executor.layers.activation import get_act_fn
|
|
from vllm.model_executor.layers.conv import Conv2dLayer
|
|
from vllm.model_executor.layers.linear import (
|
|
ColumnParallelLinear,
|
|
LinearBase,
|
|
QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.platforms import current_platform
|
|
|
|
from .vision import get_vit_attn_backend
|
|
|
|
|
|
class VisionRotaryEmbedding(nn.Module):
|
|
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
|
super().__init__()
|
|
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
|
|
def forward(self, seqlen: int) -> torch.Tensor:
|
|
seq = torch.arange(
|
|
seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype
|
|
)
|
|
freqs = torch.outer(seq, self.inv_freq)
|
|
return freqs
|
|
|
|
|
|
class Siglip2VisionEmbeddings(nn.Module):
|
|
def __init__(self, config: PretrainedConfig):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.patch_size = config.patch_size
|
|
self.image_size = config.image_size
|
|
self.num_patches = config.num_patches
|
|
self.preserve_original_pe = config.preserve_original_pe
|
|
self.hidden_stride = config.hidden_stride
|
|
|
|
# siglip2 naflex
|
|
if self.num_patches > 0:
|
|
self.patch_embedding = ReplicatedLinear(
|
|
input_size=config.num_channels * self.patch_size * self.patch_size,
|
|
output_size=self.embed_dim,
|
|
return_bias=False,
|
|
)
|
|
if self.preserve_original_pe:
|
|
self.position_embedding_size = int(self.num_patches**0.5)
|
|
self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim)
|
|
|
|
else:
|
|
self.patch_embedding = Conv2dLayer(
|
|
in_channels=config.num_channels,
|
|
out_channels=self.embed_dim,
|
|
kernel_size=self.patch_size,
|
|
stride=self.patch_size,
|
|
padding="valid",
|
|
)
|
|
if self.preserve_original_pe:
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2
|
|
self.position_embedding_size = self.image_size // self.patch_size
|
|
self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim)
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values: torch.FloatTensor,
|
|
grid_thws: torch.LongTensor | None = None,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
pixel_values (`torch.FloatTensor`):
|
|
Pixel values of shape (
|
|
num_patches,
|
|
num_channels * temporal_patch_size * patch_size * patch_size
|
|
)
|
|
grid_thws: (`torch.LongTensor`):
|
|
grid shape (num_patches, 3)
|
|
"""
|
|
|
|
# Apply patch embeddings to already patchified pixel values
|
|
target_dtype = self.patch_embedding.weight.dtype
|
|
if isinstance(self.patch_embedding, LinearBase):
|
|
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))
|
|
elif isinstance(self.patch_embedding, Conv2dLayer):
|
|
pixel_values = pixel_values.view(
|
|
-1,
|
|
self.config.num_channels * self.config.temporal_patch_size,
|
|
self.patch_size,
|
|
self.patch_size,
|
|
)
|
|
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))
|
|
patch_embeds = patch_embeds.reshape(-1, self.embed_dim)
|
|
|
|
if self.preserve_original_pe:
|
|
assert grid_thws is not None
|
|
pos_embed_new = torch.zeros_like(patch_embeds)
|
|
positional_embeddings = (
|
|
self.position_embedding.weight.reshape(
|
|
self.position_embedding_size, self.position_embedding_size, -1
|
|
)
|
|
.unsqueeze(0)
|
|
.permute(0, 3, 1, 2)
|
|
)
|
|
cnt = 0
|
|
for t, h, w in grid_thws:
|
|
volume = t * h * w
|
|
pe = F.interpolate(
|
|
positional_embeddings,
|
|
size=(h, w),
|
|
mode="bicubic",
|
|
align_corners=False,
|
|
)
|
|
pe = pe.permute(0, 2, 3, 1).reshape(1, h * w, -1)
|
|
pe = pe[0].repeat(t, 1)
|
|
pe = pe.reshape(
|
|
t,
|
|
h // self.hidden_stride,
|
|
self.hidden_stride,
|
|
w // self.hidden_stride,
|
|
self.hidden_stride,
|
|
-1,
|
|
)
|
|
pe = pe.permute(0, 1, 3, 2, 4, 5).reshape(volume, -1)
|
|
pos_embed_new[cnt : cnt + volume] = pe
|
|
cnt += volume
|
|
patch_embeds = patch_embeds + pos_embed_new
|
|
|
|
return patch_embeds
|
|
|
|
|
|
# copy from flash_attn/layers/rotary.py
|
|
def rotate_half(x, interleaved=False):
|
|
if not interleaved:
|
|
x1, x2 = x.chunk(2, dim=-1)
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
else:
|
|
x1, x2 = x[..., ::2], x[..., 1::2]
|
|
return rearrange(
|
|
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
|
|
)
|
|
|
|
|
|
def apply_rotary_emb_torch(x, cos, sin, interleaved=False):
|
|
"""
|
|
x: (batch_size, seqlen, nheads, headdim)
|
|
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
|
|
"""
|
|
ro_dim = cos.shape[-1] * 2
|
|
assert ro_dim <= x.shape[-1]
|
|
cos = repeat(
|
|
cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
|
|
)
|
|
sin = repeat(
|
|
sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
|
|
)
|
|
return torch.cat(
|
|
[
|
|
x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin,
|
|
x[..., ro_dim:],
|
|
],
|
|
dim=-1,
|
|
)
|
|
|
|
|
|
def apply_rotary_pos_emb(
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
cos: torch.Tensor,
|
|
sin: torch.Tensor,
|
|
is_flash_attn_backend: bool = False,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
cos = cos.chunk(2, dim=-1)[0].contiguous()
|
|
sin = sin.chunk(2, dim=-1)[0].contiguous()
|
|
if is_flash_attn_backend and not current_platform.is_xpu():
|
|
from flash_attn.layers.rotary import apply_rotary_emb
|
|
|
|
apply_rotary_emb_func = apply_rotary_emb
|
|
else:
|
|
apply_rotary_emb_func = apply_rotary_emb_torch
|
|
q_embed = apply_rotary_emb_func(q.float(), cos.float(), sin.float()).type_as(q)
|
|
k_embed = apply_rotary_emb_func(k.float(), cos.float(), sin.float()).type_as(k)
|
|
return q_embed, k_embed
|
|
|
|
|
|
class Siglip2Attention(nn.Module):
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: Siglip2VisionConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
attn_backend_override: AttentionBackendEnum | None = None,
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.embed_dim = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = self.embed_dim // self.num_heads
|
|
if self.head_dim * self.num_heads != self.embed_dim:
|
|
raise ValueError(
|
|
f"embed_dim must be divisible by num_heads "
|
|
f"(got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
|
f" {self.num_heads})."
|
|
)
|
|
self.scale = self.head_dim**-0.5
|
|
self.dropout = config.attention_dropout
|
|
self.is_causal = False
|
|
|
|
# TODO(Isotr0py): Enable data parallel after we support
|
|
# disabling TP on parallel linear layer
|
|
self.qkv_proj = QKVParallelLinear(
|
|
hidden_size=self.embed_dim,
|
|
head_size=self.head_dim,
|
|
total_num_heads=self.num_heads,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
self.out_proj = RowParallelLinear(
|
|
input_size=self.embed_dim,
|
|
output_size=self.embed_dim,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.out_proj",
|
|
)
|
|
|
|
self.tp_size = (
|
|
1 if use_data_parallel else get_tensor_model_parallel_world_size()
|
|
)
|
|
self.num_heads_per_partition = divide(self.num_heads, self.tp_size)
|
|
self.use_rope = config.use_rope
|
|
|
|
# Detect attention implementation.
|
|
self.attn_backend = get_vit_attn_backend(
|
|
head_size=self.head_dim,
|
|
dtype=torch.get_default_dtype(),
|
|
attn_backend_override=attn_backend_override,
|
|
)
|
|
self.use_upstream_fa = False
|
|
|
|
self.attn_backend, self.flash_attn_varlen_func = (
|
|
maybe_get_vit_flash_attn_backend(
|
|
self.attn_backend,
|
|
self.use_upstream_fa,
|
|
attn_backend_override=attn_backend_override,
|
|
)
|
|
)
|
|
|
|
if self.attn_backend not in {
|
|
AttentionBackendEnum.FLASH_ATTN,
|
|
AttentionBackendEnum.TORCH_SDPA,
|
|
AttentionBackendEnum.ROCM_AITER_FA,
|
|
}:
|
|
self.attn_backend = AttentionBackendEnum.TORCH_SDPA
|
|
self.is_flash_attn_backend = self.attn_backend in {
|
|
AttentionBackendEnum.FLASH_ATTN,
|
|
AttentionBackendEnum.ROCM_AITER_FA,
|
|
}
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
cu_seqlens: torch.Tensor,
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor] | None = None,
|
|
) -> tuple[torch.Tensor, torch.Tensor | None]:
|
|
"""Input shape: Batch x Time x Channel"""
|
|
|
|
seq_length, embed_dim = hidden_states.shape
|
|
|
|
qkv_states, _ = self.qkv_proj(hidden_states)
|
|
queries, keys, values = qkv_states.chunk(3, dim=-1)
|
|
|
|
queries = queries.view(seq_length, self.num_heads_per_partition, self.head_dim)
|
|
keys = keys.view(seq_length, self.num_heads_per_partition, self.head_dim)
|
|
values = values.view(seq_length, self.num_heads_per_partition, self.head_dim)
|
|
|
|
if self.use_rope:
|
|
cos, sin = position_embeddings
|
|
queries, keys = apply_rotary_pos_emb(
|
|
queries.unsqueeze(0),
|
|
keys.unsqueeze(0),
|
|
cos,
|
|
sin,
|
|
self.is_flash_attn_backend,
|
|
)
|
|
queries = queries.squeeze(0)
|
|
keys = keys.squeeze(0)
|
|
|
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
|
if self.is_flash_attn_backend:
|
|
attn_output = self.flash_attn_varlen_func(
|
|
queries,
|
|
keys,
|
|
values,
|
|
cu_seqlens_q=cu_seqlens,
|
|
cu_seqlens_k=cu_seqlens,
|
|
max_seqlen_q=max_seqlen,
|
|
max_seqlen_k=max_seqlen,
|
|
).reshape(seq_length, -1)
|
|
elif self.attn_backend == AttentionBackendEnum.TORCH_SDPA:
|
|
# Execute attention entry by entry for speed & less VRAM.
|
|
batch_size = cu_seqlens.shape[0] - 1
|
|
outputs = []
|
|
cu = cu_seqlens.tolist()
|
|
for i in range(batch_size):
|
|
start_idx = cu[i]
|
|
end_idx = cu[i + 1]
|
|
|
|
# Each sequence is processed independently.
|
|
q_i = queries[start_idx:end_idx].unsqueeze(0)
|
|
k_i = keys[start_idx:end_idx].unsqueeze(0)
|
|
v_i = values[start_idx:end_idx].unsqueeze(0)
|
|
|
|
# (1, seq_len, num_heads, head_dim) ->
|
|
# (1, num_heads, seq_len, head_dim)
|
|
q_i, k_i, v_i = [x.transpose(1, 2) for x in (q_i, k_i, v_i)]
|
|
|
|
output_i = F.scaled_dot_product_attention(q_i, k_i, v_i, dropout_p=0.0)
|
|
# (1, num_heads, seq_len, head_dim) -> (seq_len, embed_dim)
|
|
output_i = output_i.transpose(1, 2).reshape(end_idx - start_idx, -1)
|
|
outputs.append(output_i)
|
|
|
|
attn_output = torch.cat(outputs, dim=0)
|
|
attn_output, _ = self.out_proj(attn_output)
|
|
return attn_output
|
|
|
|
|
|
class Siglip2MLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Siglip2VisionConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.activation_fn = get_act_fn(config.hidden_act)
|
|
# TODO(Isotr0py): Enable data parallel after we support
|
|
# disabling TP on parallel linear layer
|
|
self.fc1 = ColumnParallelLinear(
|
|
config.hidden_size,
|
|
config.intermediate_size,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.fc1",
|
|
)
|
|
self.fc2 = RowParallelLinear(
|
|
config.intermediate_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.fc2",
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
hidden_states, _ = self.fc1(hidden_states)
|
|
hidden_states = self.activation_fn(hidden_states)
|
|
hidden_states, _ = self.fc2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class Siglip2EncoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Siglip2VisionConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
attn_backend_override: AttentionBackendEnum | None = None,
|
|
):
|
|
super().__init__()
|
|
self.embed_dim = config.hidden_size
|
|
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
self.self_attn = Siglip2Attention(
|
|
config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.self_attn",
|
|
use_data_parallel=use_data_parallel,
|
|
attn_backend_override=attn_backend_override,
|
|
)
|
|
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
|
self.mlp = Siglip2MLP(
|
|
config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp",
|
|
use_data_parallel=use_data_parallel,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
cu_seqlens: torch.Tensor,
|
|
position_embeddings: torch.Tensor,
|
|
) -> tuple[torch.FloatTensor]:
|
|
"""
|
|
Args:
|
|
hidden_states: Input tensor of shape (batch, seq_len, embed_dim).
|
|
cu_seqlens: Cumulative sequence lengths tensor.
|
|
position_embeddings: Position embeddings tensor.
|
|
"""
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.layer_norm1(hidden_states)
|
|
hidden_states = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
cu_seqlens=cu_seqlens,
|
|
position_embeddings=position_embeddings,
|
|
)
|
|
hidden_states = residual + hidden_states
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.layer_norm2(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
return hidden_states
|
|
|
|
|
|
class Siglip2Encoder(nn.Module):
|
|
"""
|
|
Transformer encoder consisting of `config.num_hidden_layers`
|
|
self attention layers. Each layer is a [`Siglip2EncoderLayer`].
|
|
|
|
Args:
|
|
config: PretrainedConfig
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: Siglip2VisionConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
attn_backend_override: AttentionBackendEnum | None = None,
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layers = nn.ModuleList(
|
|
[
|
|
Siglip2EncoderLayer(
|
|
config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.layers.{idx}",
|
|
use_data_parallel=use_data_parallel,
|
|
attn_backend_override=attn_backend_override,
|
|
)
|
|
for idx in range(config.num_hidden_layers)
|
|
]
|
|
)
|
|
|
|
self.rotary_pos_emb = VisionRotaryEmbedding(
|
|
config.hidden_size // config.num_attention_heads // 2
|
|
)
|
|
self.patch_size = config.patch_size
|
|
self.hidden_stride = config.hidden_stride
|
|
self.window_size = config.window_size
|
|
self.spatial_merge_unit = config.hidden_stride * config.hidden_stride
|
|
if config.fullatt_block_indexes is None:
|
|
self.fullatt_block_indexes = None
|
|
else:
|
|
self.fullatt_block_indexes = [
|
|
int(i) for i in config.fullatt_block_indexes.split("|")
|
|
]
|
|
|
|
# copied from qwen2.5_vl
|
|
def rot_pos_emb(self, grid_thw):
|
|
pos_ids = []
|
|
for t, h, w in grid_thw:
|
|
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
|
hpos_ids = hpos_ids.reshape(
|
|
h // self.hidden_stride,
|
|
self.hidden_stride,
|
|
w // self.hidden_stride,
|
|
self.hidden_stride,
|
|
)
|
|
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
|
|
hpos_ids = hpos_ids.flatten()
|
|
|
|
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
|
wpos_ids = wpos_ids.reshape(
|
|
h // self.hidden_stride,
|
|
self.hidden_stride,
|
|
w // self.hidden_stride,
|
|
self.hidden_stride,
|
|
)
|
|
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
|
|
wpos_ids = wpos_ids.flatten()
|
|
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
|
pos_ids = torch.cat(pos_ids, dim=0)
|
|
max_grid_size = grid_thw[:, 1:].max()
|
|
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
|
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
|
return rotary_pos_emb
|
|
|
|
def get_window_index(self, grid_thw):
|
|
window_index: list = []
|
|
cu_window_seqlens: list = [0]
|
|
window_index_id = 0
|
|
# patch (after merge) number in each window
|
|
vit_merger_window_size = (
|
|
self.window_size // self.hidden_stride // self.patch_size
|
|
)
|
|
|
|
for grid_t, grid_h, grid_w in grid_thw:
|
|
llm_grid_h, llm_grid_w = (
|
|
grid_h // self.hidden_stride, # number of patch after merge
|
|
grid_w // self.hidden_stride,
|
|
)
|
|
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(
|
|
grid_t, llm_grid_h, llm_grid_w
|
|
)
|
|
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
|
|
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
|
|
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
|
|
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
|
|
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
|
|
index_padded = index_padded.reshape(
|
|
grid_t,
|
|
num_windows_h,
|
|
vit_merger_window_size,
|
|
num_windows_w,
|
|
vit_merger_window_size,
|
|
)
|
|
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
|
|
grid_t,
|
|
num_windows_h * num_windows_w,
|
|
vit_merger_window_size,
|
|
vit_merger_window_size,
|
|
)
|
|
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
|
|
index_padded = index_padded.reshape(-1)
|
|
index_new = index_padded[index_padded != -100]
|
|
window_index.append(index_new + window_index_id)
|
|
cu_seqlens_tmp = (
|
|
seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1]
|
|
)
|
|
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
|
|
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
|
|
window_index = torch.cat(window_index, dim=0)
|
|
|
|
return window_index, cu_window_seqlens
|
|
|
|
def forward(
|
|
self,
|
|
inputs_embeds: torch.Tensor,
|
|
grid_thws: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
r"""
|
|
Args:
|
|
inputs_embeds: Input tensor of shape
|
|
(batch_size, sequence_length, hidden_size).
|
|
Embedded representation of the input tokens.
|
|
grid_thws: Grid tensor of shape (num_patches, 3)
|
|
containing grid dimensions.
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of
|
|
a plain tuple.
|
|
"""
|
|
rotary_pos_emb = self.rot_pos_emb(grid_thws)
|
|
window_index, cu_window_seqlens = self.get_window_index(grid_thws)
|
|
cu_window_seqlens = torch.tensor(
|
|
cu_window_seqlens,
|
|
device=inputs_embeds.device,
|
|
dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32,
|
|
)
|
|
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
|
|
|
|
seq_len, _ = inputs_embeds.size()
|
|
inputs_embeds = inputs_embeds.reshape(
|
|
seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1
|
|
)
|
|
inputs_embeds = inputs_embeds[window_index, :, :]
|
|
inputs_embeds = inputs_embeds.reshape(seq_len, -1)
|
|
rotary_pos_emb = rotary_pos_emb.reshape(
|
|
seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1
|
|
)
|
|
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
|
|
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
|
|
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
|
position_embeddings = (emb.cos(), emb.sin())
|
|
|
|
cu_seqlens = torch.repeat_interleave(
|
|
grid_thws[:, 1] * grid_thws[:, 2], grid_thws[:, 0]
|
|
).cumsum(
|
|
dim=0,
|
|
# Select dtype based on the following factors:
|
|
# - FA2 requires that cu_seqlens_q must have dtype int32
|
|
# - torch.onnx.export requires that cu_seqlens_q must have
|
|
# same dtype as grid_thw
|
|
# See https://github.com/huggingface/transformers/pull/34852
|
|
# for more information
|
|
dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32,
|
|
)
|
|
cu_seqlens = torch.cat([cu_seqlens.new_zeros(1), cu_seqlens])
|
|
|
|
reverse_indices = torch.argsort(window_index)
|
|
|
|
hidden_states = inputs_embeds
|
|
for index, block in enumerate(self.layers):
|
|
if not self.fullatt_block_indexes or index in self.fullatt_block_indexes:
|
|
cu_seqlens_tmp = cu_seqlens
|
|
else:
|
|
cu_seqlens_tmp = cu_window_seqlens
|
|
hidden_states = block(hidden_states, cu_seqlens_tmp, position_embeddings)
|
|
|
|
hidden_states = hidden_states.reshape(
|
|
seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1
|
|
)
|
|
hidden_states = hidden_states[reverse_indices, :].reshape(seq_len, -1)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class Siglip2VisionTransformer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Siglip2VisionConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
attn_backend_override: AttentionBackendEnum | None = None,
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
embed_dim = config.hidden_size
|
|
|
|
self.embeddings = Siglip2VisionEmbeddings(config)
|
|
self.encoder = Siglip2Encoder(
|
|
config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.encoder",
|
|
use_data_parallel=use_data_parallel,
|
|
attn_backend_override=attn_backend_override,
|
|
)
|
|
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values: torch.FloatTensor,
|
|
grid_thws: torch.LongTensor,
|
|
) -> torch.Tensor:
|
|
r"""
|
|
spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
|
|
Tensor containing the spatial dimensions (height, width)
|
|
of the input images.
|
|
"""
|
|
hidden_states = self.embeddings(pixel_values, grid_thws)
|
|
|
|
last_hidden_state = self.encoder(hidden_states, grid_thws)
|
|
last_hidden_state = self.post_layernorm(last_hidden_state)
|
|
|
|
return last_hidden_state
|
|
|
|
|
|
class Siglip2NavitModel(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: Siglip2VisionConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
use_data_parallel: bool = False,
|
|
attn_backend_override: AttentionBackendEnum | None = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.vision_model = Siglip2VisionTransformer(
|
|
config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.vision_model",
|
|
use_data_parallel=use_data_parallel,
|
|
attn_backend_override=attn_backend_override,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
pixel_values: torch.FloatTensor,
|
|
grid_thws: torch.LongTensor,
|
|
) -> torch.Tensor:
|
|
return self.vision_model(
|
|
pixel_values=pixel_values,
|
|
grid_thws=grid_thws,
|
|
)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
|
|
for name, loaded_weight in weights:
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|