Harry Mellor d6953beb91
Convert formatting to use ruff instead of yapf + isort (#26247)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 07:06:22 -07:00

154 lines
6.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Iterable
import torch
import torch.nn as nn
from vllm.config import VllmConfig
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.llama import LlamaForCausalLM, LlamaModel
from .llama import LlamaDecoderLayer
from .utils import (
AutoWeightsLoader,
PPMissingLayer,
WeightsMapper,
is_pp_missing_parameter,
)
class TeleChat2Model(LlamaModel):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
hf_config = vllm_config.model_config.hf_config
vllm_config.model_config.hf_config.attribute_map = {
"num_hidden_layers": "n_layer",
"num_attention_heads": "n_head",
"intermediate_size": "ffn_hidden_size",
"rms_norm_eps": "layer_norm_epsilon",
}
vllm_config.model_config.hf_config.hidden_act = "silu"
# 1. Initialize the LlamaModel with bias
hf_config.bias = True
hf_config.mlp_bias = True
super().__init__(vllm_config=vllm_config, prefix=prefix)
# 2. Remove the bias from the qkv_proj and gate_up_proj based on config
# Telechat2's gate_up_proj and qkv_proj don't have bias
# see: https://github.com/vllm-project/vllm/pull/10311#issuecomment-2490297566
for layer in self.layers:
if not isinstance(layer, PPMissingLayer):
layer.self_attn.qkv_proj.bias = None
layer.self_attn.qkv_proj.skip_bias_add = True
layer.mlp.gate_up_proj.bias = None
layer.mlp.gate_up_proj.skip_bias_add = True
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
total_num_heads = self.config.n_head
head_dim = self.config.hidden_size // total_num_heads
for name, loaded_weight in weights:
if "self_attn.key_value" in name:
k_weight = []
v_weight = []
for i in range(total_num_heads):
start = i * head_dim * 2
k_weight.append(loaded_weight[start : start + head_dim, :])
v_weight.append(
loaded_weight[start + head_dim : start + 2 * head_dim :]
)
k_weight = torch.cat(k_weight, dim=0)
v_weight = torch.cat(v_weight, dim=0)
name = name.replace("key_value", "qkv_proj")
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, k_weight, "k")
weight_loader(param, v_weight, "v")
elif "query" in name:
name = name.replace("query", "qkv_proj")
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, "q")
else:
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class TeleChat2ForCausalLM(LlamaForCausalLM):
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={
"transformer.": "model.",
},
orig_to_new_substr={
".h.": ".layers.",
".self_attention.": ".self_attn.",
".word_embeddings.": ".embed_tokens.",
".dense.": ".o_proj.",
".ln_f.": ".norm.",
},
)
def _init_model(
self,
vllm_config: VllmConfig,
prefix: str = "",
layer_type: type[nn.Module] = LlamaDecoderLayer,
):
return TeleChat2Model(vllm_config=vllm_config, prefix=prefix)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(
self,
skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
)
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)