mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 04:35:01 +08:00
154 lines
6.1 KiB
Python
154 lines
6.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from collections.abc import Iterable
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.models.llama import LlamaForCausalLM, LlamaModel
|
|
|
|
from .llama import LlamaDecoderLayer
|
|
from .utils import (
|
|
AutoWeightsLoader,
|
|
PPMissingLayer,
|
|
WeightsMapper,
|
|
is_pp_missing_parameter,
|
|
)
|
|
|
|
|
|
class TeleChat2Model(LlamaModel):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
hf_config = vllm_config.model_config.hf_config
|
|
|
|
vllm_config.model_config.hf_config.attribute_map = {
|
|
"num_hidden_layers": "n_layer",
|
|
"num_attention_heads": "n_head",
|
|
"intermediate_size": "ffn_hidden_size",
|
|
"rms_norm_eps": "layer_norm_epsilon",
|
|
}
|
|
vllm_config.model_config.hf_config.hidden_act = "silu"
|
|
|
|
# 1. Initialize the LlamaModel with bias
|
|
hf_config.bias = True
|
|
hf_config.mlp_bias = True
|
|
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
|
# 2. Remove the bias from the qkv_proj and gate_up_proj based on config
|
|
# Telechat2's gate_up_proj and qkv_proj don't have bias
|
|
# see: https://github.com/vllm-project/vllm/pull/10311#issuecomment-2490297566
|
|
for layer in self.layers:
|
|
if not isinstance(layer, PPMissingLayer):
|
|
layer.self_attn.qkv_proj.bias = None
|
|
layer.self_attn.qkv_proj.skip_bias_add = True
|
|
layer.mlp.gate_up_proj.bias = None
|
|
layer.mlp.gate_up_proj.skip_bias_add = True
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
total_num_heads = self.config.n_head
|
|
head_dim = self.config.hidden_size // total_num_heads
|
|
for name, loaded_weight in weights:
|
|
if "self_attn.key_value" in name:
|
|
k_weight = []
|
|
v_weight = []
|
|
for i in range(total_num_heads):
|
|
start = i * head_dim * 2
|
|
k_weight.append(loaded_weight[start : start + head_dim, :])
|
|
v_weight.append(
|
|
loaded_weight[start + head_dim : start + 2 * head_dim :]
|
|
)
|
|
k_weight = torch.cat(k_weight, dim=0)
|
|
v_weight = torch.cat(v_weight, dim=0)
|
|
name = name.replace("key_value", "qkv_proj")
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, k_weight, "k")
|
|
weight_loader(param, v_weight, "v")
|
|
elif "query" in name:
|
|
name = name.replace("query", "qkv_proj")
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, "q")
|
|
else:
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(
|
|
param, "weight_loader", default_weight_loader
|
|
)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class TeleChat2ForCausalLM(LlamaForCausalLM):
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_prefix={
|
|
"transformer.": "model.",
|
|
},
|
|
orig_to_new_substr={
|
|
".h.": ".layers.",
|
|
".self_attention.": ".self_attn.",
|
|
".word_embeddings.": ".embed_tokens.",
|
|
".dense.": ".o_proj.",
|
|
".ln_f.": ".norm.",
|
|
},
|
|
)
|
|
|
|
def _init_model(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
layer_type: type[nn.Module] = LlamaDecoderLayer,
|
|
):
|
|
return TeleChat2Model(vllm_config=vllm_config, prefix=prefix)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(
|
|
self,
|
|
skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
|
|
)
|
|
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|